
LibVCS4j: A Java Library for Repository Mining

Marcel Steinbeck
University of Bremen

marcel@informatik.uni-bremen.de

Abstract

Analyzing the evolution of software systems has be-
come an emerging field of research. In the last couple
of years, different studies investigated the evolution
of various systems by utilizing version control sys-
tems and issue trackers. Due to the absence of suit-
able libraries, however, most of these studies imple-
mented their own data extraction tools. This paper
presents LibVCS4j, a Java programming library that
tries to accommodate this shortcoming. The library
integrates existing software to access repository rou-
tines, adds additional features for data analysis, and
defines a common API to make subsequent analyses
independent from particular repository systems.

1 Introduction

Due to the complexity of modern systems, the circum-
stance that software is developed together in teams
distributed around the world, and for data backup
reasons, version control systems (VCS), such as Git,
Mercurial, and Subversion, are likely used to manage
middle to large sized software projects. Furthermore,
issue trackers are incorporated to put down bugs in
writing, emphasize different strategies to solve issues,
and, as a result, simplify communication between de-
velopers. Using repository mining techniques, differ-
ent studies have been conducted to analyze the evolu-
tion of a multitude of software systems by processing
the data provided by version control systems, for in-
stance, the change history of files containing source
code, as well as issue trackers, for instance, issues ref-
erenced in commit messages [1], [2], [3]. However, due
to the absence of self-contained and freely accessible
libraries that assist in extracting the required informa-
tion, tools to gather the necessary data are developed
over and over again.

In this paper, we present the Java programming
library LibVCS4j 1. The library serves as a tool for
processing different version control systems as well as
issue trackers under a common API. The project is
divided into two submodules: (1) a lightweight and
interface-only API that is supposed to be integrated
into existing analysis tools, and (2) an implementation
providing the features. The remainder of this paper
describes the data model and extraction engines of the
API submodule.

1https://github.com/uni-bremen-agst/libvcs4j

2 Data Model

The entire data model of LibVCS4j is depicted by the
UML diagram in figure 1. In the following, only the
most essential components are described.

Commit This interface provides basic access to the
data of an individual commit applied to a repository.
Each instance contains the list of files reported as
changed by the underlying VCS engine.

FileChange The FileChange interface allows to ex-
amine the changes applied to a single file. Accord-
ingly, it provides access to a file’s state before and
after the corresponding commit has been applied.

Revision A Revision represents the analyzed repos-
itory at a certain point in time, and is the result of a
sequence of commits applied to a predecessor revision.

Size, Complexity LibVCS4j may not only be used
to process a repository system, but also adds meth-
ods to compute several size and complexity related
metrics. We believe that these metrics are useful for
analysis tools using LibVCS4j and, thus, integrated
them into our data model. In order to compute the
metrics for an individual file, the ConQAT scanner li-
brary2 is used to generate its token stream which, in
turn, is parsed to collect the necessary data. ConQAT
is well suited for this task as it supports several pro-
gramming languages, amongst others, ADA, C/C++,
Java, Python, and Ruby, and is capable of classifying
tokens, for instance, comment and literal tokens.

Version The Version interface forms the basis of
our data model and reflects the file changes of the
referenced commits. By referencing more than one
commit, the interface provides a mechanism to merge
consecutive commits on, for instance, a monthly basis.
Accordingly, the actual list of FileChange objects is
generated based on the commits a version subsumes.
For example, if a version v references two commits c1
and c2 where c1 adds a new file f which is removed
with c2 afterwards, the list of file changes reported by
v does not include f .

Issue This interface provides basic access to issues
extracted from an issue tracker as well as the com-
ments attached to an issue.

2https://www.cqse.eu/en/products/conqat/overview



<<Interface>>

Version

+getRevision() : Revision
+getPredecessorRevision() : Optional<Revision>
+getCommits() : List<Commit>
+getFileChanges() : List<FileChange>
+isFirst() : boolean

<<Interface>>

Commit

+getId() : String
+getAuthor() : String
+getMessage() : String
+getDateTime() : LocalDateTime
+getParentIds() : List<String>
+getFileChanges() : List<FileChange>
+isMerge() : boolean

<<Interface>>

FileChange

+getType() : Type
+getOlfFile() : Optional<VCSFile>
+getNewFile() : Optional<VCSFile>
+computeDiff() : List<LineChange>

<<Interface>>

Revision

+getCommitId() : String
+getOutput() : Path
+getFiles() List<VCSFile>

<<Interface>>

VCSFile

+getPath() : String
+getRelativePath() : String
+getRevision() : Revision
+guessCharset() : Optional<Charset>
+readAllBytes() : byte[]
+readContent(): String
+toFile() : File
+toRelativeFile() : File
+toPath() : Path
+toRelativePath() : Path<<Interface>>

LineChange

+getType() : Type
+getLine() : int
+getContent() : String
+getFile() : VCSFile

<<Interface>>

Size

+getLOC() : int
+getSLOC() : int
+getCLOC() : int
+getNOT() : int
+getSNOT() : int
+getCNOT() : int

<<enumeration>>

Type

+ADD
+REMOVE
+MODIFY
+RELOCATED

<<enumeration>>

Type

+INSERT
+DELETE

<<Interface>>

Issue

+getId() : String
+getAuthor() : String
+getTitle() : String
+getDateTime() : LocalDateTime
+getComments() : List<Comment>

<<Interface>>

Comment

+getAuthor() : String
+getMessage() : String
+getDateTime() : LocalDateTime

<<Interface>>

Complexity

+getMcCabe() : int
+getHalstead() : Halstead

<<Interface>>

Halstead

+ getn1() : int
+ getn2() : int
+ getN1() : int
+ getN2() : int
+ getVocabulary() : int
+ getVolume() : double

1..*

0..*0..*

1..2

1..2

0..*

0..*

1

0..1

1

1

0..*
0..*

0..*

0..1

1

Figure 1: The data model of LibVCS4j.

3 Extraction Engines

By using extraction engines, analysis tools are able
to query different repository systems under a com-
mon API and parse the output provided by LibVCS4j
to perform the actual analysis for each revision de-
sired. Two different engines are available: (1) the
VCSEngine that allows to process version control sys-
tems and, to that effect, supply instances of the data
model described in section 2, and (2) the ITEngine
that is capable of extracting issues from an issue
tracker. Figure 2 shows an UML diagram depicting
the provided extraction engines. In the following, we
discuss the engines in more detail.

<<Interface>>

VCSEngine

+next() : Optional<Version>

<<Interface>>

ITEngine

+getIssueById(id : String) : Optional<Issue>
+parseIssueIds(text : String) : List<String>

0..1

Figure 2: The extraction engines provided by
LibVCS4j. A VCSEngine allows to process a version
control system and may use an ITEngine to automat-
ically extract issues referenced in commit messages.

VCSEngine This engine is used to abstract from
the concrete version control system and provides
methods to checkout a repository commit wise. In
order to process a version control system, the re-
quired repository routines are delegated to the under-
lying VCS engine. Afterwards, the returned output
is mapped to our data model. For example, the Java
library JGit3 is used to clone Git repositories from ex-
ternal URLs, checkout commits according to the user
configuration, and map the reported file changes to
FileChange instances.

3https://www.eclipse.org/jgit

ITEngine While a VCSEngine delivers one version
after another, an ITEngine provides access to the cor-
responding issue tracker. As with the VCSEngine,
the required operations to parse issues from an is-
sue tracker are delegated using existing libraries and
APIs. ITEngines may be used as a standalone tool
or as part of a VCSEngine to automatically extract
issues referenced by commits when processing a VCS.

4 Conclusion

We presented LibVCS4j, a Java programming library
for repository mining with a common API for differ-
ent version control systems and issue trackers. The
library allows existing tools to make subsequent anal-
yses independent from particular repository systems
and provides support for Git, Mercurial, Subversion,
Github, and Gitlab. However, it is not limited to
this engines. In future work, we plan to extend
LibVCS4j to cover further systems, such as CVS,
Bazaar, Bugzilla, and Jira.

References

[1] N. Göde. Evolution of type-1 clones. In 2009 Ninth
IEEE International Working Conference on Source
Code Analysis and Manipulation, pages 77–86, Sept
2009.

[2] M. Tufano, F. Palomba, G. Bavota, R. Oliveto,
M. Di Penta, A. De Lucia, and D. Poshyvanyk. When
and why your code starts to smell bad. In Proc. of the
37th ICSE, pages 403–414. IEEE Press, 2015.

[3] C. Vendome, M. Linares-Vasquez, G. Bavota, M. D.
Penta, D. German, and D. Poshyvanyk. License us-
age and changes: A large-scale study of java projects
on github. In 2015 IEEE 23rd International Confer-
ence on Program Comprehension, pages 218–228, May
2015.


	Introduction
	Data Model
	Extraction Engines
	Conclusion

