
Deriving Categories of Semantic Clones from a Coding Contest 
 

Torsten Görg 
torsten.goerg@itemis.de 

itemis AG 

 

 
Abstract: This paper establishes subcategories of 

semantic code clones, based on code from a coding 

contest. We provide these clone subcategories as a 

basis of a benchmark for semantic code clone 

detection algorithms. 

1 Introduction 

Beyond code clones that result from copy and paste 

activities, another reason for clones is independent 

implementation of the same abstract algorithm. 

These so called mental clones or semantic clones 

realize the same or at least a similar functionality 

but might look quite different in their syntactic 

structure [1]. It is not possible to detect all semantic 

clones automatically because the semantic 

equivalence of code fragements is not decidable in 

general. Nevertheless, it is worth to build clone 

detectors that approximatively find as many of 

these clones as possible. 

We have created several prototypical detectors for 

semantic clones. Even some advanced kinds of 

variations are handled by our detectors, e.g., the 

reordering of statements in a statement sequence [2] 

and the extraction of loop invariant code. 

Nevertheless, the detection results do not meet our 

expectations. Either our detection approaches are 

not appropriate for real semantic clones or the 

analyzed system do not encompass as many 

relevant semantic clones as we expect. To improve 

our clone detectors we need a deeper understanding 

of this problem. 

2 Alternative Development Process 

A usual way to create clone detectors is to construct 

a detection mechanism in theory, implement it, and 

evaluate the clone detection results for several 

example systems. This approach has several 

disadvantages. During the creation, it is not 

guaranteed that the detection mechanism really 

covers relevant semantic clones. On the other hand, 

the implementation of a clone detector might cost 

much effort. This is especially true for semantic 

clone detectors because more sophisticated 

mechanisms are required than for the detection of 

copy and paste clones. Overall, the approach is 

contrary to some major software engineering 

principles. I.e., the analysis and specification of 

requirements is missing. Detailed requirements for 

a clone detector should describe how the clones 

look like that are most important to detect. 

A major problem is that in most cases the code 

clones in a given system are not know in advance. 

An oracle is missing. As a consequence, for the 

construction of the detection mechanism you can 

only guess how the clones might look like in real 

systems. Especially for semantic clones, many 

different variations between the matching  code 

fragments are possible. It is not obvious which 

kinds of variations are more frequent than others. 

There is a high risk to spend much development 

effort for the handling of irrelevant kinds of 

variations. 

Our idea is to turn the process around in order to 

attack the clone detection problem from another 

side. In a first step, we explore a training set of 

example systems manually in order to learn about 

the semantic clones in these systems and the kinds 

of variations that occur there. Then we implement 

clone detectors for the most frequent kinds of 

clones to minimize development costs. In this paper 

we focus on the manual exploration step. 

3 Code Variations Modeling 

To specify which kinds of semantic clones are most 

relevant, we model them as subcategories of the 

semantic clones category (clone type 4). Clone 

categories should be as independent from any 

detection technique as possible. Although it is an 

open question if static or dynamic approaches are 

more appropriate for the detection of semantic 

clones, subcategories of semantic clones cannot be 

defined based on the input output behaviour and a 

black box view of the analyzed code fragments, as 

the input output behaviour of semantic clones is 

identical, by defintion. We have to take the inner 

structure of the code into account. 

We view the differences between semantically 

matched code fragments as structural variations that 

do not affect the semantics significantly. More 

precisely, the differences between two code 

fragments are expressed as a sequence of locally 

applied, fine-grained code variations. We define 

subcategories of clone type 4 as abstractions of 

such variation sequences. A subcategory is given by 

a sequence of variation steps, where each step is a 

fine-grained variation of a particular variation kind. 



4 Manual Code Exploration 

For arbitrary example systems, code clone oracles 

are not available. But we can make use of coding 

contests, which are conducted quite often 

nowadays, e.g., by Google. A coding contest 

provides a programming task that is solved by 

many submitters. For some contests, the set of all 

correct solutions is published. The correctness of 

the solutions guarantees that they are all semantic 

clones of each other. 

Wagner et al. [3] used the results of Google Code 

Jam in 2014 to investigate coarse grained categories 

of semantic code clones and to create a benchmark 

for clone detectors. They defined five categories: 

variations in algorithms, in data structures, in 

input/output operations, in the use of libraries, and 

in the object-oriented design. Each code example in 

their benchmark is assigned to exaclty one of these 

categories. We have inspected the examples in 

detail and have seen that each clone pair 

encompasses multiple fine-grained variations of 

different kinds. Our identification of kinds of fine-

grained variations is based on the code examples in 

the benchmark of Wagner et al. 

We have explored each clone pair of the benchmark 

manually. Fine-grained variations are applied to the 

code fragments until both sides of a clone pair are 

identical. The order of the variation steps is not 

necessarily unique. But different sequences often 

contain variations of the same kinds. Finally, we 

derive clone subcategories as abstractions of the 

calculated variation sequences. 

5 Variation Kinds Catalog 

To prepare the manual code exploration we gather 

an initial set of possible kinds of fine-grained 

variations, in advance. This catalog provides us 

code patterns to look for during the exploration. If 

none of these patterns can be applied we have to 

add further kinds of variations to the catalog, as an 

adaptation of our theory to the real world program 

code. Without our new approach, clones based on 

these kinds of variations would be missed. 

The initial catalog encompasses syntactical 

variations, data flow related variations (including 

data flows via pointer dereferencing and side 

effects), control flow related variations, differently 

cut procedures, use of different data structures and 

algorithms, and local implementations instead of 

library function calls. 

6 Evaluation 

The following table lists the most important kinds 

of variations we have found in the analyzed 

benchmark code, together with their absolute and 

relative frequencies: 

 

variation kind abs rel 

consistent identifier renaming 36 18% 

elimination of unnecessary code 32 16% 

adapt string literal 21 11% 

replace printf/scanf by fprintf/fscanf 15 8% 

type widening 14 7% 

expression transformation 9 5% 

replace while-loop by for-loop 7 4% 

eliminate intermediate result variable 7 4% 

restructure if-then-else branch cascading 6 3% 

loop index range shift 5 3% 

exchange of mathematical algorithm 5 3% 

extract assignment 5 3% 

reorder statements 4 2% 

merge of if-then-else-cascade branches 4 2% 

7 Conclusion 

Now we have a basis at hand that guides our further 

development of semantic code clone detectors. To 

detect a clone of a particular subcategory, handlings 

of all variation kinds in its sequence have to be 

implemented. 

The results are derived from artifically provoked 

semantic code clones. We cannot conclude that real 

systems encompass such clones as well. 

Furthermore, the solutions of the coding contest 

might be influenced by the task descriptions and the 

given hints. 

Nevertheless, the situation of independent coding is 

realistic. If there are semantic clones in real 

systems, they probably look similar to the clones 

found in this study. 

 

References 
 
[1] Chanchal Kumar Roy and James R. Cordy, “A 

survey on software clone detection research,” 

technical report, Queen’s University, Canada, 2007. 

[2] Torsten Görg, “Interprocedural PDG-based Code 

Clone Detection,” in Proc. of the 18th Workshop 

Software Reengineering & Evolution (WSRE 2016), 

Bad Honnef, Germany, 2016. 

[3] Stefan Wagner et al., “How are funtionally similar 

code clones syntactically different? An emperical 

study and a benchmark,“ PeerJ Computer Science 

2:e49, 2016. 


