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Abstract

Software is subject to continuous change. Software
quality is determined by large extent through archi-
tecture which reflects important decisions, e.g. on
structure and technology. For sound decision making
during evolution change impacts on various system
artifacts must be understood. In this paper, we intro-
duce a new evolution scenario (replacing the database)
to an established demonstrator for information sys-
tem evolution. We demonstrate the application of an
architecture-based approach for change impact anal-
ysis to identify artifacts affected by the scenario.

1 Introduction

Software-intensive systems, such as information sys-
tems, are frequently operated over decades. In indus-
trial practice these systems face diverse changes, e.g.
due to emerging requirements, bug fixes, or adapta-
tions in their environment, such as legal constraint or
technology stack updates [6]. As a result, the systems
change continually which is understood as software
evolution [5]. The software architecture is one of the
central artifacts of software-intensive systems and is
crucial in evolution. Software development and oper-
ation involve a variety of organizational and technical
roles covering different responsibilities and knowledge.
Thus, coordinating and implementing changes is dif-
ficult. Although these roles are very heterogeneous,
they all use artifacts which are tightly related to soft-
ware architecture. Reflecting changes in software ar-
chitecture models helps to identify maintenance tasks
for associated artifacts like source code or test cases.

In this paper, we introduce a new evolution sce-
nario “replacing the database” to the Common Com-
ponent Modeling Example (CoCoME) [7] which serves
as a common case study on information system evo-
lution. An overview of CoCoME is given in Sec. 2.
We use the tool-supported approach Karlsruhe Ar-
chitectural Maintainability Prediction (KAMP) [3] for
change impact analysis based on change requests in
an architecture model. Sec. 3 introduces KAMP. In
Sec. 4, we demonstrate how to apply KAMP to the
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evolution scenario for identifying artifacts affected by
the change request. The paper concludes in Sec. 5.

2 CoCoME – A Case Study on Infor-
mation System Evolution

CoCoME represents a trading system as it can be ob-
served in a supermarket chain handling sales. This
includes processing sales at a single store as well
as enterprise-wide administrative tasks like ordering
products or inventory management. The CoCoME
system is organized as a three-layer software archi-
tecture which allows for distributing the system on
server nodes and for remote communication. Detailed
description is given in [7]. CoCoME has been set up as
a common demonstrator in a Dagstuhl research sem-
inar. Since CoCoME has been applied and evolved
successfully in various DFG and EU research projects,
several variants of CoCoME exist, spanning different
platforms and technologies, such as plain Java code,
service-oriented or hybrid Cloud-based architectures.
Various artifacts from development and operation are
available, such as requirements specification, design
decisions, source code, architecture models, or moni-
toring and simulation data, that evolved over time.

The new evolution scenario “replacing the
database” refers to the plain Java variant of CoCoME.
In the scenario, CoCoME faces performance issues. In
order to avoid them the company which operates Co-
CoME decides to replace the existing database. They
shift away from a relational database (e.g., MySQL)
to a non-relational database (e.g., CouchDB).

3 Architecture-based Change Impact
Analysis

KAMP [3] explicitly includes formal architecture de-
scriptions by means of meta-models for identifying
change impacts. The approach relies on the follow-
ing assumptions: (a) All artifacts of system devel-
opment and operation must be considered. Focus-
ing only on code is not sufficient. (b) Changes are
initialized through evolution scenarios, resulting into
predictable requirements on changes. (c) It is eas-
ier to identify the effort of fine-grained maintenance
tasks, e.g. adding, deleting, or modifying architecture
elements, than of coarse-grained maintenance tasks.



KAMP consists of two phases – preparation phase
and analysis phase – and is followed by an interpreta-
tion phase. In the preparation phase, an architecture
model for each design alternative to be compared is
created. For this, meta-modeled architecture descrip-
tion languages are applied. Starting with a given evo-
lution scenario, e.g. replacing a middleware technol-
ogy or replacing the database, the considered change
request(s) are identified by a human software archi-
tect. A change request among other things includes
initially affected architecture elements, such as a par-
ticular software component or an interface, that are
already known by the architect. In the analysis phase,
artifacts affected by initially changed architecture el-
ements are identified first. Then, lists of maintenance
tasks (i.e. work plans) specific to the affected artifacts
are created for each architecture alternative. This is
performed automatically by the KAMP tooling for
each architecture alternative and change request. In
the interpretation phase, change efforts are estimated
and architecture alternatives are compared by the ar-
chitect based on the lists of maintenance tasks iden-
tified by the KAMP tooling. KAMP basically com-
prises three contributions [3]: (i) meta-models to de-
scribe system parts and their dependencies, (ii) a pro-
cedure to automatically identify system parts to be
changed for a given change request defined manually
as well as (iii) a procedure to automatically derive re-
quired maintenance tasks from a given change request
to simplify the identification of a change effort and,
by that, the maintainability estimation. Furthermore,
KAMP is proposed to be applied for automated soft-
ware project planning [2] and for deriving work plans
to solve performance and scalability issues [1].

4 Applying KAMP to a CoCoME
Evolution Scenario

Next, we describe how to apply KAMP to the
CoCoME evolution scenario “replacing the database”.
Replacing a relational database by a non-relational
database raises certain consequences. For example,
because JDBC has just been developed to provide a
connection to relational databases, the interface has
to be replaced, too. KAMP is applied to identify such
consequences of changing the database and to find out
all affected components. While in the following only
an overview is given, further details on the application
of KAMP to the scenario and the affected architecture
elements is available in [4].

In the preparation phase, the architect creates
the architecture model of CoCoME and annotates it
with additional information regarding building, de-
ployment, and testing.

In the analysis phase, a copy of the current ar-
chitecture model is created first. Second, the archi-
tect executes the structural changes in the architec-
ture model. S/he deletes the old Database component
in the architecture and adds another one. Moreover,

s/he knows that the interface will not be usable any
more and removes it and adds a new one. After the ar-
chitect has marked all changes in the model copy, s/he
triggers the calculation of the differences between the
original and the copied model. The KAMP tooling
recognizes that the Database component and its inter-
face have been removed and another component and
interface have been added. KAMP maps this informa-
tion to maintenance tasks and builds up a first draft
of a work plan which contains all tasks to realize the
changes.

Next, possible side effects of changing single com-
ponents are analyzed by investigating connections to
other components. In the given scenario, the Data

component (cf. [4]) is affected by changing the Database

component. KAMP recognizes that Data is a compos-
ite component consisting of several sub-components
which are included in the analysis and affected sub-
components are added to the work plan.

After all affected architecture elements have been
mapped to tasks additional tasks for building, deploy-
ment, and testing are considered. For example, given
that the architecture model has been enriched with
test case information, for every test connected to the
Data and Database component a modify and run task
is suggested. This procedure results in comprehen-
sive work plans suitable to implement and estimate
changes.

5 Conclusion

We described the application of KAMP for change im-
pact analysis in the new CoCoME evolution scenario
“replacing the database”. In the future, CoCoME will
be further modified to create new and evolve existing
artifacts by new evolution scenarios such as the intro-
duction of mobile clients.
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