
Views for Efficient Program Understanding of Automotive Software

Jochen Quante

Robert Bosch GmbH
Corporate Sector Research and Advance Engineering Software

P.O. Box 30 02 40, 70442 Stuttgart, Germany

Jochen.Quante@de.bosch.com

Abstract

Automotive Software is often developed using graph-
ical notations, such as ASCET or Matlab Simulink
models. This means that also different approaches
to program comprehension have to be developed. In
this paper, we present the results of a research project
that developed and evaluated different views on such
models.

1 Introduction

Program comprehension is always a challenge, except
for very simple programs. According to Lehman and
Belady [5], 40% of the entire software lifecycle costs
account for program comprehension. This is not only
true for textual programming languages, but also for
model-based development. Therefore, program com-
prehension support is also desirable for model-based
languages.

In a first attempt to better support program com-
prehension, we asked the community to demonstrate
their tools on a problem of our domain [1]. Unfortu-
nately, the results were not convincing [6], so we had
to come up with our own solutions which are intro-
duced in the following.

2 Views for Program Comprehension

In architecture descriptions, views [4] are used to focus
on different concerns of the same system. The same
concept can be used on implementation level. A given
piece of software or model can only express a certain
amount of aspects. Almost always, there are other
aspects that stay hidden and are therefore hard to
comprehend. If we change the software to emphasize
these hidden aspects, others will be neglected. Views
are a means to solve this problem.

This is also true for model based software devel-
opment. A model only focuses on some aspects. For
example, ASCET1 focuses on data flow and neglects
control flow. This makes it very hard to understand
the control flow of an ASCET model, although it is

1http://www.etas.com/en/products/ascet_md_modeling_

design.php

still important. The same is true for data flow in a C
function.

In order to identify the most beneficial views for
the automotive domain, we first set up a collection of
views. Beside obvious views to visualize the control
flow, we identified domain specific categories like a
variant view which highlights one variant of a product
line software. We found the following four categories
of views:

Scope reducing views Those parts of the software
that are irrelevant in the current scope are faded out.
The user’s focus is directed to the relevant informa-
tion.

• Variant views hide inactive code. This is helpful
when developing a software product line. For ex-
ample, the Eclipse CDT2 greys out code that is
inactive due to the current macro definitions.

• Context aware views to simplify computations use
calibration data to simplify code. For example,
if a parameter is set to zero, a following addi-
tion can be omitted, or a multiplication can be
substituted with zero.

• Context aware views to simplify control flow use
fixed values (fixed parameters in a function call or
fixed through calibration) to fade out code with
no impact. For example, if a condition evaluates
to false, the true branch is not relevant.

Structural views show only the structure of a
given part of the software. This is particularly useful
for navigation and orientation. Considered structures
were composition structure (directories, files, func-
tions, etc.) and the call graph.

Data flow views help to track data flow, in par-
ticular in software that is specified in a control flow
centric way. But also for data flow oriented ASCET
models, such views can be very helpful for tracking
data flows through a system – especially when there
are additional hidden dependencies.

2http://www.eclipse.org/cdt/



Control flow views help to understand the se-
quence of execution, in particular in data flow ori-
ented representations such as ASCET. Examples are
control flow graphs, Nassi Shneiderman diagrams, and
the ASCET sequence view (see below).

The complete list consists of about 20 views. Based
on this list and corresponding examples, we ques-
tioned function developers, team leaders, and calibra-
tion engineers about their potential usefulness. Based
on the results of this survey, we prioritized the view
candidates and realized the two views with the high-
est expected benefit with respect to their specialties
in the automotive domain. One of them is introduced
in the following.

3 Concrete View: Signal Flow

To comprehend the physical interrelationships be-
tween values at certain points in the software, the data
flow between these points is very important. There-
fore, a view that shows these dependencies is of great
interest, especially for calibration engineers. They
have to set values for engine specific parameters in
the software to derive a specific variant from a prod-
uct line software. Therefore, they have to understand
the physical effect chain which is represented in the
software. For example, they want to know which of
the parameters affect which output variable.

A technique that is intended for calculating the
flows through a function is slicing [9, 2]. For a given
variable at a given program point, slicing can find
out which other parts of the program are affected by
that variable, or which parts of the program influ-
ence that variable. It can also determine the depen-
dencies between two program points, which is called
chopping [3]. These techniques answer exactly those
questions that application engineers have when work-
ing with our software models. Therefore, our signal
flow view is a realization of slicing and chopping for
ASCET.

In Figure 1, the result of this analysis on an ASCET
model is presented. This example shows one specialty
of ASCET. Because one can have multiple occurrences
of variables in one picture, data flow analysis has to
derive dependencies that were not present as data con-
nections in the original picture3. This means the data
flow model may be incomplete prior to data flow anal-
ysis.

Recently, a very similar approach has successfully
been used for understanding signal flows through a
component-based embedded system [10]. Another re-
cent publication [7] shows how slicing can be applied
to MATLAB Simulink models. Along with the pos-
itive feedback from our engineers, this is another in-
dicator that this technique is well suited for easier
understanding of models of embedded software.

3This is the standard case for control flow oriented lan-
guages, but not for data flow oriented languages.

Figure 1: Signal Flow View for ASCET.

4 Outlook

Since it turned out that specific questions require spe-
cific views, we are now about to develop a general
general analysis framework for C code and ASCET
models along with a number of standard views. The
idea is that one can easily construct individual new
views based on that. Another consequence of this re-
search project is the initiation of the development of a
tool that provides interactive navigation and viewing
of software documentation. The presented view is a
part of that.

References

[1] A. Begel and J. Quante. Industrial program compre-
hension challenge 2011: Archeology and anthropol-
ogy of embedded control systems. In Proc. of 19th
ICPC, pages 227–229, 2011.

[2] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in optimiza-
tion. ACM TOPLAS, 9(3):319–349, 1987.

[3] D. Jackson and E. J. Rollins. Chopping: a general-
ization of slicing. Technical report, Carnegie Mellon
University, CS-94-169, July 1994.

[4] P. Kruchten. Architectural blueprints – the “4+1”
view model of software architecture. IEEE Software,
12(6):42–50, 1995.

[5] M. M. Lehman and L. A. Belady. Program evolu-
tion: processes of software change. Academic Press
Professional, Inc., 1985.

[6] J. Quante. When program comprehension met bug
fixing. Softwaretechnik-Trends, 32(2), May 2012.

[7] R. Reicherdt and S. Glesner. Slicing MATLAB
simulink models. In Proc. of 34th ICSE, 2012.

[8] A. Thums and J. Quante. Reengineering embedded
automotive software. In Proc. of 28th ICSM, pages
493–502, 2012.

[9] M. Weiser. Program slicing. In Proc. of 5th ICSE,
pages 439–449, 1981.

[10] A. R. Yazdanshenas and L. Moonen. Tracking and
visualizing information flow in component-based sys-
tems. In Proc. of 20th ICPC, 2012.


