
A Change Impact Analysis Case Study:

Replacing the Input Data Model of SoMoX∗

Benjamin Klatt, Martin Küster, Klaus Krogmann, Oliver Burkhardt
FZI Research Center for Information Technology

Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany
{klatt,kuester,krogmann,burkhardt}@fzi.de

1 Introduction

Change impact analysis aims to provide insights about
efforts and effects of a change to be expected, and to
prevent missed adaptations. However, the benefit of
applying an analysis in a given scenario is not clear.
Only a few studies about change impact analysis ap-
proaches compare the actual effort spent implement-
ing the change with the prediction of the analysis [4].
To gain more insight about change impact analysis
benefits, we have performed a case study on chang-
ing a software’s input data model. We have applied
two analyses — using the Java compiler and a depen-
dency graph based approach — before implementing
the actual change. In this paper, we present the re-
sults, showing that i) syntactically required changes
have been predicted adequately, iii) changes required
for semantical correctness required the major effort
but were not predicted at all, and iii) tool support for
change impact analysis still needs to be improved.

2 Change Scenario Under Study
The case study was performed on the open source
software SoMoX1. SoMoX is a software analysis tool
capable to re-engineer a component structure from
a software’s implementation. It consists of a set of
Eclipse plug-ins with approximate 9,000 lines of Java
code. SoMoX consumes an Abstract Syntax Tree
(AST) model as input data model to detect compo-
nents based on hierarchical clustering of basic compo-
nents detected from classes and interfaces.

As shown in Figure 1, subject of the change is the
above mentioned AST model. The original model,
provided by the SISSy tooling2, should be replaced
with the one provided by the MoDisco tooling [1].

Both data models are based on the Eclipse Mod-
eling Framework (EMF) and are designed to de-
scribe the software entities of object-oriented pro-
grams. They have been modeled as Ecore meta mod-
els, their Java implementations have been generated
by EMF and are provided as Eclipse plug-ins.

Due to the structural similarities of the two mod-
els, we expected only minor structural differences and

∗This work was supported by the German Federal Ministry
of Education & Research (BMBF), grant No. 01IS12012B.

1http://www.somox.org
2http://www.sqools.org/sissy/

Big Picture

Case Study: Usefulness of Change Impact Analysis

SISSy
SoMoX

(Current)

Class
Class

Class
Class

Class
Class

GAST Model

MoDisco

KDM Model

SoMoX
(Changed)

Source Code Extracted Component ModelModel
Extractors

Class
Class

Class
Class

Class
Class

C
h

an
ge

Motivation Related Work Approach Selection Implementation Steps Quality Assurance Evaluation Summary

Oliver Burkhardt – A Case Study on Change Impact Analysis: Changing SoMoX’s Input Model January 17, 2013 3/21

Figure 1: SoMoX Change Scenario

obvious namespace changes. As described in the fol-
lowing section, a change impact analysis was intended
to provide insight into the detailed efforts and to help
not to miss any locations that need to be adapted.

3 Change Analyses Performed
The change scenario under study requires an approach
working on the existing implementation of a software.
It must be capable of analyzing based on an input
with granularity of types (i.e. classes and interfaces)
or more detailed level (e.g. methods). The analysis
result must return expressions, representing code lo-
cations that need to be changed. Furthermore, the
approach should determine the change impact in an
automated, non-iterative manner, to get an estima-
tion in advance of the implementation.

Evaluating existing approaches surveyed by Lehn-
ert [4], none of them provides a public available tooling
to be applied in the case study. The most promising
candidate, JRipples [2], had to be discarded because
of its iterative workflow of analyzing and implement-
ing a change. In addition, it could not be applied due
to a technical limitation on systems consisting of a
single Eclipse project only.

Finally, two approaches have been selected to be
applied: First, facilitating compiler messages as a
naive, straight-forward, and low-overhead approach.
Second, executing a dependency graph query as a
more mature and widely known approach.

3.1 Compiler-Messages

The Eclipse Java Development Tools (JDT) prepare
and present messages of the Java compiler. Remov-
ing the current input data model of SoMoX from the
workspace leads to such messages presenting accord-
ing compiler errors. The JDT provide statistics about



Category Compiler Query
Estimated 700 710
Estimated And Changed 513 710
Estimated Not Changed 187 0

Syntax only:
Changes Not Estimated 200 3
Implemented Changes 713 713
Precision 73.29% 100.00%
Recall 71.95% 99.58%

Including Semantic:
Changes Not Estimated 752 555
Implemented Changes 1265 1265
Precision 73.29% 100.00%
Recall 40.55% 56.12%

Table 1: Change Impact Analysis Results

the compiler messages and links to code locations es-
timated as impacted by the missing data model.

3.2 Dependency Graph Analysis

For the case study, a dependency graph query accord-
ing to Lee et al.[3] has been implemented based on the
MoDisco infrastructure. The query finds all TypeAc-
cess, AbstractMethodInvocation, SingleVariableAccess,
and ImportDeclaration references in the packages un-
der study (i.e. starting with ”org.somox”) referenc-
ing to elements in the input data model packages (i.e.
”de.fzi.gast”).

Using a MoDisco discoverer extracting Java AST
and KDM inventory models, the query result view
provides statistics as well as links to the according
code locations in a Java editor.

Implementing the query took approximate one day
and was done by a developer already familiar with the
MoDisco infrastructure and the Java AST meta model
the query was written for.

4 Evaluation of the Results
To evaluate the benefit of the analysis, the two analy-
ses have been performed before the actual change was
implemented. During the implementation, the modi-
fied locations have been tracked in terms of changed
locations. If more than one location was changed
within a single line of code, a change has been counted
for each location. For example, replacing ClassA
with ClassB for the var1’s type and the constructor
call in the statement ClassA var1 = new ClassA(); is
counted as two changes.

Table 1 presents the results of the two analyses.
The first section of the table shows, that the query
approach estimated more required changes (Hits) and
less false positives (Miss). For example, the com-
piler does not identify member accesses (e.g. method
calls) on unresolved data types. Furthermore, it re-
ports false positives such as classes containing impacts
but do not require any changes themselves. We dis-
tinguish syntactical changes, required to successfully
compile SoMoX, and semantical changes, required to

produce the same detection results as before.
The semantic changes are primarily caused by man-

ual adaptations to the generated SISSy AST model.
They are used to pre-calculate insights about software
elements. While this is not possible for the new data
input model, 42 helper methods containing 552 lines
of code were added to the SoMoX implementation.

The syntactical changes, not estimated by both ap-
proaches, are string comparisons of file extensions.

In summary, the query approach provides better re-
sults compared to the compiler approach. For syntac-
tical impacts, it achieves 100% over 73.29% precision
and 99.58% recall over 71.95% recall which are both
good results. However, taking semantical changes into
account, the recall is significantly reduced for both ap-
proaches to 56.12% respectively 40.55% percent.

5 Conclusion and Outlook
In this paper, we presented the results of our case
study on an impact analysis for changing the in-
put data model of SoMoX. We identified no public
available implementation of an applicable change im-
pact analysis. As surveyed by Lehnert [4], many ap-
proaches are available (∼160 in the survey). But
only a few describe evaluation experiments (∼40).
Even those rarely compare their prediction with ac-
tual change implementations. For example, Toth et
al. [6] compared their tool’s estimation with the es-
timation of programmers. Also, Lindvall et al. [5]
have compared programmers’ estimations with the
actual implemented changes. We further described
the compiler-based and dependency graph-based ap-
proaches that we have chosen, implemented and ap-
plied. The results show that the query-based ap-
proach adequately estimated the required syntactical
changes, while both were not able to estimate the se-
mantic changes which required the major amount of
effort.

We published our MoDisco-based change impact
query on the SoMoX website. In addition, we cur-
rently wrap this query as an Eclipse plug-in for sim-
plified reuse by others.

References

[1] H. Bruneliere, J. Cabot, F. Jouault, and F. Ma-
diot. MoDisco: a generic and extensible framework
for model driven reverse engineering. In ASE’10.

[2] J. Buckner, J. Buchta, M. Petrenko, and V. Rajlich.
JRipples: A Tool for Program Comprehension during
Incremental Change. In IWPC’05.

[3] M. Lee, J. Offutt, and R. T. Alexander. Algorithmic
Analysis of the Impacts of Changes to Object-Oriented
Software. In TOOLS’00.

[4] S. Lehnert. A Review of Software Change Impact
Analysis. Technical report, Technische Universität Il-
menau, 2011.

[5] M. Lindvall. Evaluating Impact Analysis - A Case
Study. Empirical Software Engineering, 2(2), 1997.

[6] G. Tóth, H. Péter, A. Beszédes, T. Gyimóthy, and
J. Jász. Comparison of Different Impact Analysis
Methods and Programmer’s Opinion - an Empirical
Study. In PPPJ’10.


