
Fuzzing: Testing Security in Maintenance Projects

Frank Simon, Daniel Simon

SQS Software Quality Systems AG, Stollwerckstraße 11, 51149 Cologne, Germany

Email: frank.simon|daniel.simon@sqs.com

Abstract: New trends in IT industry impose in-

creasingly requirements on openness and interoper-

ability via networks to enterprise software systems.

As a consequence, more and more legacy applica-

tions are made available via interfaces more openly

through mobile and insecure networks, thereby

inducing security risks the initial designs have nev-

er had to account for. In this paper, we show how a

highly automatable black-box method called fuzz-

ing for testing security can be integrated into testing

processes to increase interfaces of legacy applica-

tion in terms of security profiles.

1 Introduction

Several IT technology trends (SOA, cloud compu-

ting, and the ever present mobility) contribute con-

sciously to increasing networking readiness of ap-

plications. Following the new trends, everyone is

expecting legacy applications to be accessible via

mobile and internet connections rather than closed

and secure enterprise intranets. At the same time,

more and more business critical data are made

available through such channels and as such in-

crease business risks with regards to security. Long-

living software systems and application never de-

signed for the access via unsecured and open net-

works now have to be made ready to interact and

interoperate through channels unforeseen at the

time of initial development. To this end, we elabo-

rate in this paper how the widely-known ideas of

fuzzing can be integrated into standard test process-

es in order to increase the security of legacy appli-

cations that have undergone extension by many

new interfaces.

2 Testing and Security

According to ISTQB [1], testing is “The process

consisting of all life cycle activities, both static and

dynamic, concerned with planning, preparation and

evaluation of software products and related work

products to determine that they satisfy specified

requirements, to demonstrate that they are fit for

purpose and to detect defects.”

Testing is not only mandatory for new IT systems.

Whenever a change to a system is implemented

(e.g. by adding interfaces) it is the tester’s task to

assure “correctness” of the implementation of the

change. This includes regression testing to demon-

strate unchanged requirements’ stability as well as

testing new requirements. New requirements can

induce adjustments for the regression testing as

well: The requirement to open an existing IT sys-

tem for mobile communication – as example – has

not only to be tested for its own but might motivate

deeper testing of directly connected components.

For a more systematic view on these implicit testing

adjustments testing can be refined into four steps (a

more general approach can be found in [2]:

1. Identification of test objects (What artefacts

relevant for project success?)

2. Identification of quality attributes (What proper-

ties should the artefacts have?)

3. Determination of corresponding test activities to

ensure artefacts having particular attributes

4. Clustering of test activities into test stages that

can be executed in conjunction

This paper focuses the following aspect: Adding

new interfaces creates new test objects as well as it

produces new or at least adjusted priorities for qual-

ity attributes requiring additional test activities on

all test stages. Quality attributes for software can be

taken from ISO 25000 family of standards. [3] In

particular when adding new service interfaces to

legacy applications the first time, security should be

seen as one of the top priorities. Security is defined

in the ISO 25010 standard as the Degree to which a

product or system protects information and data so

that persons or other products or systems have the

degree of data access appropriate to their types and

levels of authorization.

3 Fuzzing of Software Interfaces

Fuzzing was developed at the University of Wis-

consin in 1989 [4], [5]. Takanen et al [6] define

fuzzing as follows:

„A highly automated testing technique that covers

numerous boundary cases using invalid data (from

files, network protocols, API calls, and other tar-

gets) as application input to better ensure the ab-

sence of exploitable vulnerabilities. The name

comes from modem applications’ tendency to fail

due to random input caused by line noise on `fuzzy`

telephone lines.”

From the tester’s perspective, fuzzing is

 a black-box test for interfaces as test objects, as

it does not require knowledge of the underlying

implementation;

 a test method for the quality attribute security,

as it tries to identify errors in a system that

compromise confidentiality, integrity, and

availability;

 a negative test method, as it does not try to veri-

fy expected system behaviour.

 a brute force method, as it makes use of exces-

sive, sometimes random, test data to exploit the

interfaces;

 a boundary test, as it derives test data from

specified valid input data and bombards the in-

terfaces accordingly;

 an automated test method, as its use of mass

data can only be deployed effectively driven by

a machine.

As legacy systems are migrated into Service Ori-

ented Architectures and open their interfaces to the

“outside” world, in some cases through the provi-

sioning of web service interfaces, fuzzing is gaining

more and more relevance. System owners have

started to realise the risks associated with widely

(and sometimes through uncontrolled networks)

accessible interfaces and the need to make those

interfaces “bullet proof” also with regards to securi-

ty aspects.

To date however, a systematic or holistic approach

towards fuzzing has not been observed. Surprising-

ly, both modern practise oriented process models

(e.g., Microsoft Development Lifecycle Model)

mention as well as established standards such as

ISTQB/ISEB [1] give little attendance to security

tests and fuzzing so far.

To utilise fuzzing for legacy systems undergoing

some enhancements by adding new interfaces the

following can be stated as basis:

1. regression testing and testing the new require-

ments is done.

2. security as new attribute must be revisited and

considered adequately as it might not have been

in the legacy system’s original setup and it has

significant influence on a wide range of addi-

tional test objects as well.

In the following, a generic approach is drafted to

integrate fuzzing into a generic test process cover-

ing a wide range of project types in a way to easily

account for new security requirements.

4 Integration of fuzzing into the

standard test process

In order to make use of fuzzing in software mainte-

nance projects, we have to integrate the fuzzing

methodology in the test process to link it with

statement (1) mentioned above. However, in prac-

tice there exist several different standard test pro-

cesses like ISTQB fundamental test process [7],

TMap process [8], SCRUM [9], and ISO 29119

[10]). For a generic fuzzing integration these differ-

ent processes were analysed and a generic test pro-

cess for testing was derived. This meta process was

designed as to define the integration points for

fuzzing and make available the fuzzing methods for

a wide range of software projects.

Traditional test processes applied for retesting lega-

cy systems can be easily aligned with this generic

process. The artefacts in red define the integration

points of fuzzing.

The advantages of this approach are:

 Existing test processes remain unchanged (or

even better: a generic process is modelled that

can be reused).

 Hotspots for integrating fuzzing are highlighted.

 This process complements “traditional” retest-

ing with security testing

One point is not solved by this: The overall aware-

ness that security gets a more important quality

attribute motivating to apply this process. This

creation of awareness has to be done separately in

advance of deploying an IT-system.

5 Summary and Outlook

With the first results, we have integrated fuzzing

into generic test processes and thereby have made

available a method for security testing for general

use in software development and maintenance.

Fuzzing has already proven its success in many

projects, however without any opportunity to report

about tangible figures. Future work lies in a scien-

tific case study, collecting relevant numbers (effort,

findings, etc.) to demonstrate the positive ROI of

this overall concept.

6 Acknowledgements

Parts of this work have been sponsored by Ses-

amBB: Security and Safety made in Berlin-

Brandenburg e.V. The full result is available to

SesamBB members.

7 References

[1] Tilo Linz Andreas Spillner, Basiswissen Softwaretest: Aus-
und Weiterbildung zum Certified Tester - Foundation Level

nach ISTQB-Standard, 4th ed.: dPunkt Verlag, 2010.

[2] Frank Simon and Daniel Simon, Qualitätsrisikomangement.
Berlin: Logos Verlag, 2010.

[3] ISO, DIN ISO/IEC 25000 Software-Engineering –
Qualitätskriterien und Bewertung von Softwareprodukten

(Software product Quality Requirements and Evaluation),

2010.

[4] B.P. Miller, L. Fredriksen, and B. So, "An Empirical Study

of the Reliability of UNIX Utilities," Communications of

the ACM , vol. 33, no. 12, December 1990.

[5] Wikipedia. (2011, August)

http://de.wikipedia.org/wiki/Fuzzing

[6] Ari Takanen, Charles Miller, and Jared J. Demott, Fuzzing

for Software Security Testing and Quality Assurance.

Norwood: Artech House, 2008.

[7] ISTQB, "Standard glossary of terms used in Software
Testing," 2007.

[8] L. van der Aalst, B. Broekman, M. V. T. Koomen, TMap®

Next - Ein praktischer Leitfaden für ergebnisorientiertes
Softwaretesten. Heidelberg: dpunkt, 2008.

[9] Wikipedia. (2011, Nov.)

http://de.wikipedia.org/wiki/Scrum.

[10] (2011, Nov.) ISO/IEC 29119 Software Testing.

http://softwaretestingstandard.org/

