
Automated Source-Level Instrumentation
for Dynamic Dependency Analysis of COBOL Systems

Holger Knoche1, André van Hoorn2, Wolfgang Goerigk1, and Wilhelm Hasselbring2

1 b+m Informatik AG, 24109 Melsdorf
2 Software Engineering Group, University of Kiel, 24098 Kiel

Abstract

Dynamic analysis, e.g. dynamic dependency analysis,
requires the injection of monitoring code into an exis-
ting application. This paper presents an approach to
automatically locate and process the required injec-
tion sites in the source code of a COBOL system and
discusses issues arising from source-level instrumenta-
tion when applied to an industrial case study.

1 Introduction

The analysis of dynamic dependencies of software sys-
tems is a valuable source of information, especially
in modernization scenarios. The concept of aspect-
oriented programming (AOP) [2] has proven to be a
helpful tool for inserting the required instrumentation.
However, although approaches have been proposed [3],
most legacy runtime environments still lack AOP ca-
pabilities.

In this paper, we present a pragmatic approach to
add instrumentation automatically to an application’s
source code [1] in an AOP-like way. Furthermore,
we present selected results and challenges which arose
when we used this approach to perform a dynamic
calling dependency analysis of an industrial COBOL
case study system.

The remainder of this paper is structured as fol-
lows. Section 2 provides an overview of our source
code instrumentation approach. Section 3 presents
selected challenges that we encountered when we ap-
plied the approach to an industrial case study. Sec-
tion 4 discusses the issue of incomplete traces which is
likely to arise from source-level instrumentation. Fi-
nally, concluding remarks are presented in Section 5.

2 Source-Level Instrumentation

The process of automatically augmenting source code
with instrumentation instructions is carried out in two
subsequent steps. First, a static analysis component
processes the source code using common static ana-
lysis techniques. This component produces an object
model that represents the input file as a non-empty
sequence of blocks, which may be either literal blocks
or injection points. The latter are similar to AOP’s
join points, and like these, they may carry information
about their static source context.

This work is partly funded by the German Federal Ministry of
Education and Research (BMBF) under grant number 01IS10051.

This approach can be illustrated using the small
COBOL code example presented in Figure 1(a).

IDENTIFICATION DIVISION.
PROGRAM-ID. MODULE-X.

PROCEDURE DIVISION.

 CALL "MODULE-Y".
 GOBACK.

(a)

Literal block

Literal block

Before-Call Injection Point

Called Module: "MODULE-Y"

(b)

Figure 1: A simple COBOL example

Suppose we want to add instrumentation code be-
fore every CALL statement. In this case, the static
analysis component could produce the following block
sequence: one literal block from the beginning of the
module to the beginning of the CALL keyword, one
before-call injection point carrying the called module
name as additional context information, and one lite-
ral block from the beginning of the CALL statement
to the end of the module, as shown in Figure 1(b).

In a second step, the block stream is fed into a
code-generation component which produces the in-
strumented code. When encountering an injection
point, the code generator selects and expands an ap-
propriate, user-provided code template depending on
the type of the point. Thus, it is possible to exploit
the provided specific context information during tem-
plate expansion. The templates can therefore be seen
as advices with simple pointcut designators that only
depend on the point type.

Although this approach provides a flexible way of
instrumenting source code and works well in practice,
it has one major drawback: it can only be applied
to source code written in a supported programming
language. In heterogenous environments with third-
party components, it is therefore likely that some com-
ponents remain uninstrumented. Section 4 presents a
way to handle this issue for dynamic calling depen-
dency analysis.

3 Application to a Case Study

In order to evaluate the described approach, we ap-
plied it to perform a dynamic calling dependency ana-
lysis of a substantial industrial application consisting
of more than 1,000 COBOL modules. Selected chal-
lenges that were encountered during this process are
described below.

Static analysis of COBOL programs, which is re-
quired to locate the injection points, is challenging
due to various reasons. First of all, many different
dialects of and vendor-specific extensions to the lan-
guage exist. In addition, many COBOL modules con-
tain embedded transaction control or SQL statements
that are replaced by specific preprocessors during the
build process. However, particular transaction control
statements are important for dependency analysis be-
cause they may affect the control flow.

In order to avoid implementing a complete COBOL
grammar, we employed the concept of island gram-
mars [4], which works particularly well for COBOL
because of the language’s many keywords. Since the
code is only partially parsed in detail, such grammars
tend to be more robust with respect to dialects and
unknown constructs.

Albeit being helpful, island grammars have some
subtle pitfalls. While most injections had to be in-
serted at the beginning of the respective statement,
which was easy to find, some had to be added at the
end. The location of these points proved to be chal-
lenging. The most notable example was the PERFORM
statement, which had to be analyzed in detail not only
to locate its end, but also to distinguish its procedu-
ral variant, which should be instrumented, from the
inline variant.

Another challenge for both static analysis and code
generation was COBOL’s fixed source code format.
Since common parser infrastructures are designed for
free-format languages, it took some non-trivial ad-
justments to introduce format sensitivity. The main
challenge for the code generator was to maintain the
correct formatting after injecting code. Since the
COBOL file format allows arbitrary data in certain
columns, the code generator must preserve the exact
start column of literal blocks when injections are made
to prevent such data from slipping into the code area.

During our evaluation, we successfully managed to
track module calls via both native COBOL mecha-
nisms (CALL) and the employed transaction manager
(EXEC CICS LINK and EXEC CICS XCTL) as well
as section invocations (procedural PERFORM). A total
of 140,351 injection points of 14 different types were
inserted for the analysis.

4 Incomplete Event Traces

In order to collect trace information, we employ an
event-oriented logging mechanism which logs call, en-
try, and exit events for modules and sections, respec-
tively, into a database. These events are then trans-
formed into a format compatible with our Kieker ana-
lysis and visualization framework [6].

The reason for monitoring both call and entry
events is that this seemingly redundant information
allows to partially reconstruct message traces invol-
ving uninstrumented components, such as third-party
libraries for which no source code is available. We

distinguish the following cases: (i) definite call: call
A → B, entry into B; (ii) immediate return from
uninstrumented component: call A → C, next logged
event happens in A. In this case, we assume that C
is successfully called and returns control to A. Note
that there will always be a next event in A due to
exit events; (iii) call through an uninstrumented com-
ponent: call A → D, entry into E. In this case, we
assume that A has successfully called D and D (tran-
sitively) called E in the process; (iv) uncalled section:
entry into a section S without a preceding call to S.
In this case, we assume that the control flow has run
through the section and do not interpret the situation
as a call.

In order to visually distinguish assumed from defi-
nite call dependencies and components, we extended
the Kieker framework. An example illustrating the
aforementioned cases is shown in Figure 2. Assumed
dependencies are shown using dashed lines, and as-
sumed components are shaded.

$ MODULE-A

MODULE-B

MODULE-C

MODULE-EMODULE-D

Figure 2: Module-level call dependency graph with as-
sumed dependencies

5 Conclusions

Although we only implemented a small subset of the
common AOP features, we were able to successfully
perform a dynamic dependency analysis of an indus-
trial case study application. The instrumentation ap-
proach integrates seamlessly with our earlier work [5],
and its modular design allows to apply the approach to
other analysis scenarios as well as to other languages
and environments, what we plan for our future work.

References
[1] T. Chen, H. Kao, M. Luk, and W. Ying. COD — A dy-

namic data flow analysis system for Cobol. Information &
Management, 12(2):65 – 72, 1987.

[2] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In ECOOP ’97, pages 220–242. 1997.

[3] R. Lämmel and K. De Schutter. What does aspect-oriented
programming mean to Cobol? In AOSD ’05, pages 99–110,
2005.

[4] L. Moonen. Generating robust parsers using island gram-
mars. In WCRE ’01, pages 13–22, 2001.

[5] A. van Hoorn, H. Knoche, W. Goerigk, and W. Hassel-
bring. Model-driven instrumentation for dynamic analysis
of legacy software systems. In WSR ’11, pages 26–27, 2011.

[6] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A
framework for application performance monitoring and dy-
namic software analysis. In ICPE ’12, 2012. To appear.

