
Type 2 Clone Detection On ASCET Models

Francesco Gerardi

Reutlingen University
Fakultät Informatik
Reutlingen, Germany

fgerardi@web.de

Jochen Quante

Robert Bosch GmbH
Corporate Research
Stuttgart, Germany

Jochen.Quante@de.bosch.com

Abstract

Clones are a well-known bad smell pattern in soft-
ware. So far, research has concentrated on detection
of clones in textual languages, while model-based de-
velopment becomes increasingly important. This is
in particular true for the automotive domain, where
modelling languages like ASCET are used. This pa-
per presents the adaptation and extension of an exist-
ing approach for detection of clones in models. The
main novelty is a graph analysis that can detect clones
of type 2 (i. e., identical structure, but renamed ele-
ments) and distinguish between consistently and in-
consistently renamed model elements.

1 Introduction

Cloning means the duplication of artifacts within a
system. This behavior is considered harmful for soft-
ware development: Clones are the number one in the
stink parade of bad smell patterns [2]. Such redun-
dancies increase the effort for maintenance and conse-
quently the costs for development of software systems.

Clone detection on the level of source code is a
well-known and long-term topic in research. Over the
years, a lot of approaches have been established for
clone detection in textual programming languages [4].
The same problem is also present in higher-level pro-
gramming, the modelling of software. In embed-
ded software development, an executable application
for control units is generated from data-flow oriented
models, e. g., ASCET models1. Real world models of-
ten contain thousands of connected elements. This
fact complicates the manual search for clones in such
models or even makes the search impossible. However,
there have only been very few activities in model clone
detection research.

The seminal work in this area is from Deissenboeck
et al. [1]. Their approach is publicly available as part
of ConQAT2. It provides the base functionality for
detecting clones in Matlab/Simulink models. We call
it CMCD (ConQAT’s Model Clone Detection) in this

1http://www.etas.com/en/products/ascet_software_

products.php
2ConQAT is an open-source toolkit for various software anal-

ysis and quality measurements. http://www.conqat.org/

paper. The contribution of this paper is an adaption
of this algorithm to ASCET models and its extension
for detection of additional clone types.

2 Adaption and Extensions

The core of CMCD works on a general graph structure
with additional labels for each node and edge. There-
fore, the existing ASCET model has to be transformed
into a CMCD graph, and the labels have to be deter-
mined from the model. The result of CMCD are pairs
of subgraphs that are clones of each other. This means
that the subgraphs’ structures are identical, as well as
the labels. We extended the basic CMCD framework
by further parameterizable preparation steps (Prepro-
cessing) and detailed graph analyses (Postprocessing)
for retrieving better interpretable results.

Preprocessing

Preprocessing includes the correct transformation
from the ASCET-specific model elements (nodes) and
connectors (directed edges) to the model structure as
needed by CMCD as input. Furthermore, a canonical
label is built for each model element. It depends on
the user-selected clone type that should be detected.
Table 1 shows how the use of different attributes as
the canonical label allows detection of different clone
types. This makes it possible to detect clones with
nodes that have different visible labels in the original
model, but have other commonalities. For example, a
variable with a different name is still a variable.

CMCD’s Clone Detection

CMCD starts its clone detection by first identifying
clone candidates, which are pairs of nodes with match-
ing labels. Next, each of these candidates is succes-
sively enlarged according to the graph structure and

Attribute Example
Type 1 Label "&&"

Type 2 Class "Operator"

Type 2x Class+Category "OperatorLogical"

Table 1: Variants of constructing the node labels.

labels. Only clones of a certain minimum size are re-
ported. Optionally, clones are summarized into clone
cluster, a representative form for many identical clone
pairs. For details, see Deissenboeck’s paper [1].

Postprocessing

The postprocessing step performs further graph anal-
yses on CMCD’s clone results. The following analyses
and visualizations are provided:

• An overview graph shows which parts of the
graph contain clones.

• Optionally, the number of occurrences of each
node in all clones can be visualized to identify
regions of intensive cloning.

• Each clone pair is checked for inconsistently or
consistently renamed labels (for type 2(x))

• One detailed graph per clone pair shows this ad-
ditional information.

• Uncloned nodes that are directly connected to
a cloned node can optionally be included to get
more context information.

• Statistics about the size of the found clone pairs,
along with information about the number of con-
sistently and inconsistently renamed nodes.

To distinguish between consistently and inconsis-
tently renamed labels, the algorithm in Figure 1 is
used. The algorithm assumes that a graph is de-
fined by G = (V,E, L) where V describes the set
of nodes, E the set of directed edges and L the la-
belling function L : V ∪ E → N . While the sub-
graph G1 = (V1, E1, L1) points to the original artifact,
G2 = (V2, E2, L2) means its corresponding duplicate.
The function f maps a node from V1 to its cloned
counterpart.

The algorithm basically checks for each group of
identically labelled nodes in G1 (M) whether the cor-
responding set of nodes in G2 also has a unique label
(N). If this is the case, then the labels are renamed
consistently, otherwise they are not. This check has
to be performed in both directions.

3 Evaluation

The approach was implemented and applied to a num-
ber of real-world models with up to 1,500 nodes. The
calculation was performed in reasonable time (< 35s).
It delivered relevant clone pairs of remarkable size (up
to 250 nodes). However, there were also a number of
false positives among them, in particular for type 2(x)
clones.

An indicator for detecting these false positives is
the relationship between clone size and the number of
inconsistent labels. Small clones with a big share of
inconsistencies can mostly be classified as occasional
matches. In contrast to that, large clones with a small
proportion of inconsistent labels are more interesting

Require: G1 = (V1, E1, L1), G2 = (V2, E2, L2)

1: Q := {v | v ∈ V1 ∧ L1(v) 6= L2(f(v))}
2: while |Q| > 0 do
3: take one q ∈ Q arbitrarily
4: M := {v ∈ Q | L1(v) = L1(q)}
5: N := {L2(f(v)) | v ∈M}
6: if |N | > 1 then
7: mark all v ∈M as inconsistent labels
8: else
9: mark all v ∈M as consistent labels

10: end if
11: Q := Q \M
12: end while

Figure 1: Algorithm for detecting inconsistencies

and should be considered more intensively. The statis-
tics produced by the postprocessing provides this in-
formation. By appropriate sorting of the data sets it
is possible to identify relevant clone pairs.

4 Conclusion

So far, there was no possibility to perform tool sup-
ported clone detection on ASCET models. The adap-
tation of an existing approach for clone detection in
models makes it now possible for ASCET. The ad-
ditional postprocessing provides convenient visualiza-
tions and interpretation support. The algorithm for
detecting inconsistencies is the first designed and im-
plemented for model clones at all. It can as well be
applied to clone detection on other kinds of models.
The evaluation has shown potential for increasing the
accuracy of results by adjusting parameters. Over-
all, this work is another building block for further
improving the quality and efficiency of model-based
embedded software development.

References

[1] F. Deissenboeck, B. Hummel, E. Jürgens, B. Schätz,
S. Wagner, J.-F. Girard, and S. Teuchert. Clone de-
tection in automotive model-based development. In
Proc. of 13th ICSE, pages 603–612. ACM Press, 2008.

[2] M. Fowler and K. Beck. Refactoring: Improving the
design of existing code. The Addison-Wesley object
technology series. Addison-Wesley, Reading MA, 1999.

[3] F. Gerardi. Erkennung und Visualisierung von Klonen
in modellbasierter eingebetteter Software. Bachelor’s
thesis, Reutlingen University, Germany, 2012.

[4] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison
and evaluation of code clone detection techniques and
tools: A qualitative approach. Science of Computer
Programming, 74(7):470–495, 2009.

