An Integrated Tool Suite for Model-Driven Software Migration

towards Service-Oriented Architectures

Andreas Fuhr, Tassilo Horn, Volker Riediger

University of Koblenz-Landau, Germany

{ afuhr | horn | riediger }@uni-koblenz.de

Abstract

Model-driven approaches as well as migration projects
rely on a strong tool support. As part of the SOAMIG
project, a tool suite has been developed, support-
ing the model-driven migration of legacy Java and
COBOL systems towards Service-oriented Architec-
tures (SOAs). The tool suite integrates a global repos-
itory (representing business processes, code and archi-
tecture) and capabilities for (i) parsing legacy artifacts
(code and project specific architecture constructs),
(ii) analyzing legacy code (static and dynamic anal-
ysis) and (iii) transforming artifacts.

1 Introduction

Model-driven approaches heavily rely on tools. With-
out a strong tool support for modeling as well as
for querying and transforming models, model-driven
techniques are not applicable on real-life projects.
Considering the tools, software migration projects
have similar dependencies. Without powerful tools
for analyzing and migrating legacy systems, these
projects are doomed to failure. As a consequence, a
combination of both disciplines — called model-driven
software migration approaches — requires the develop-
ment of a strong tool suite for model-driven analysis
and migration of legacy systems.

As part of the SOAMIG project!, a tool suite has
been developed, supporting the model-driven software
migration of legacy systems towards Service-Oriented
Architectures (SOAs). The suite integrates tools for
the following tasks:

1. Metamodeling and generation of repository struc-
ture; model persistence, querying and transfor-
mation

2. Parsing various legacy artifacts (e.g., Java/Cobol
code, business processes or project-specific archi-
tecture constructs)

3. Analyzing legacy artifacts (static and dynamic
analyses)

4. Transforming legacy artifacts

IThis work is partially funded by the German Ministry of
Education and Research (BMBF) grant 01IS09017C/D. See
http://www.soamig.de for further information.

5. Generating code (Java, isolated service code)
In this paper, we describe the SOAMIG tool suite
covering the tasks mentioned above. In addition, we
present two industrial case studies the tool suit was
applied to.

The remainder of this paper is structured as fol-
lows. Section 2 introduces the integrated tool suite.
Section 3 briefly describes the two case studies, the
tool suite was applied to. Finally, Section 4 concludes
the paper.

2 The SOAMIG Tool Suite

This section describes the SOAMIG tool suite as
shown in Figure 1.

2.1 Repository Technology — The

TGraph Approach

One of the core elements of the tool suite is the in-
tegrated repository. Artifacts that are used during
migration are stored as models in this repository.

The main part of the repository is implemented by
TGraphs. TGraphs are typed, attributed, directed
and ordered graphs. They are specified by grUML
(graph UML) and due to their generic nature used to
represent the artifacts of the migration.

With the Graph Repository Querying Language
(GReQL), a general-purpose querying language for
TGraphs is provided. GReQL is used in static and dy-
namic analyses to retrieve information from the repos-
itory.

With the Graph Repository Transformation Lan-
guage (GReTL), a generic transformation language
for TGraphs is provided. GReTL is used for
graph/model transformations.

For accessing and manipulating T Graphs, the Java
framework JGraLab (Java Graph Laboratory)? can
be used.

2.2 Extractor Tools

Various artifacts have been stored as model during
the SOAMIG project. For parsing legacy source code,

2TGraphs, grUML, GReQL, GReTL and JGraLab are de-
veloped by the Institute for Software Technology

Legacy system

Extractor tools

© © 1

Java Cobol State

bd & —

Message

JavaFE

Business

N

CobolFE % psL R\
parsers

Code code machines repository processes

Transformation

tools

Code generation tools

SOAMIG
Extractor

©<7 JFormat %(— JGen %

Migrated Java model

system

DataModel
Generator

SOAMIG
Repository

Java, Cobol, UML
and DSL Metamodels

Analysis tools

FGM %
Dynamic
Analysis

Toolset

GReQL %

N
et R
N
AN

Cobol2Java

Figure 1: The SOAMIG tool suite.

the Java Frontend (JavaFE) and the Cobol Frontend
(CobolFE)? have been used. Both parsers generate
fine-grained syntax-graphs which are stored in the
repository.

Redocumented business processes (modeled as
UML 2.0 activity diagrams), state machines control-
ling GUI behavior (modeled as UML 2.0 state ma-
chines) and an XML message repository (project-
specific model) have been parsed using specialized
DSL parsers.

2.3 Analysis Tools

For understanding and redocumenting legacy code,
the Flow Graph Manipulator (FGM)* was used. Fur-
ther static analyses were supported by GReQL.

In addition, a dynamic analysis tool-set-up was de-
veloped, tracing which legacy code was executed dur-
ing a business process. This information was used to
integrate the business and code model and to identify
legacy code for service implementations.

2.4 Transformation Tools

For Cobol to Java language migration, the tool
Cobol2Java® was used. Based on sophisticated trans-
formation rules, Cobol2Java transforms Cobol models
into Java models.

To enable message exchange in SOA environments,
the Data Model Generator (DMG) tool was used to
generate service-specific data structures. The DMG
combines dynamic traces and message repository in-
formation.

The SoamigExtractor® tool provides a graphical
user interface for Java model transformations, e.g.,

6

3JavaFE and CobolFE are developed by pro et con

4FGM is developed by pro et con

5Cobol2Java is developed by pro et con

6The Data Model Generator and the SoamigExtractor are
developed by the Institute for Software Technology

pruning generalization hierarchies, slicing of multi-
class Java models based on execution traces or estab-
lishing traceability links between source and target
models. Model transformations may be supported by
GReTL.

2.5 Code Generation Tools

Two tools are used for Java code generation: JGen
and JFormat”. JGen is used to unparse a Java model
to Java source code, supporting only basic formatting.
JFormat is an adaptable Java source formatter based
on the Eclipse JDT formatter.

3 Case Studies

The tool suite was developed during and tested on two
case studies: LCOBOL and RailClient.

LCOBOL was a language migration from Cobol to
Java. The tool suite was used to parse various Cobol
dialects, transform the Cobol models to Java models
(semantics-preserving) and to unparse the Java mod-
els to formatted Java source code.

RailClient was a architecture migration aiming at
migrating a legacy monolithic Java client to a Service-
Oriented Architecture. The tool suite was used for
program understanding and for service identification
and service migration.

4 Conclusion

As part of the SOAMIG project, a comprehensive
tool suite was developed and integrated, supporting
model-driven migration towards Service-Oriented Ar-
chitectures. The tool suite was tested on two case
studies. Experiences of these two case studies indi-
cate, that the integrated tool suite is able to provide
the required tool support for model-driven software
migration projects.

7JGen and JFormat are developed by pro et con

