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Abstract

In the last years, automotive systems evolved to be more
and more software-intensive systems. As a result, consider-
able attention has been paid to establish an efficient software
development process of such systems, where reliability is
an important criterion. Hence, model-driven development
(MDD), software engineering and requirements engineering
(amongst others) found their way into the systems engineer-
ing domain. However, one important aspect regarding the
reliability of such systems, has been largely neglected on a
holistic level: the IT security. In this paper, we introduce
a potential approach for integrating IT security in the
requirements engineering process of automotive software
development using function net modeling.

1. Introduction

Current automotive systems (i.e., being part of auto-
mobiles) can be considered as a network of embedded
systems (e.g., Electronic Control Units(ECUs)) which are
connected to each other via different bus systems and thus,
exhibit a considerable complexity. Moreover, in the recent
years automotive systems became more and more software
intensive systems. This is caused by the fact that more and
more functionality of an off-the-shelf car is implemented by
software functions. It is expected, that in 2010 a medium-
sized vehicle will contain approx. 1 GB of Software [1].

In order to develop software in an efficient way and to
overcome the (still increasing) complexity anyway, tech-
niques and concepts from the field of software engineering
(SE) and requirements engineering (RE) have been proposed
and applied to the development process [2], [3], [4], [5], [6].
Although the software should contribute, amongst others, to
the reliability of the system, one aspect has been neglected
so far in the development process: holistic concepts forIT
security. Successful attacks on an automotive IT system
can have negative implications on the safety of its human
users or on the reliability of the system itself [7]. In several
studies it has been shown that attacks on current automotive
IT systems are possible without much effort and special
expertise of vehicle components [8], [9], [10]. However,
today it is common that the (mostly generated) code is
retrofitted at the end of the development process in order

to satisfy security concerns. This, in turn, counteracts the
effort of reducing complexity by using modern concepts of
SE and RE. Furthermore, this process is prone to simply
ignore serious vulnerabilities and thus, allows for security
leaks remaining in the system.

We argue that it is inevitable to integrate IT security
considerations in the early stages of the (automotive) soft-
ware development process. In the following, we sketch an
approach which aims at specifying security requirements in
early stages (i.e. requirements analysis) and thus, can be
taken into account for design and implementation.

The remainder of this paper is structured as follows. In
Section 2 we give an overview of automotive systems and
the relevance of IT security within this domain. In Section
3 we point out the problem of today’s automotive software
development regarding the IT security. The Sections 4 and
5 encompass our approach for specifying security require-
ments, divided into modeling and formalization. We close
our article with a conclusion and an outlook of future work.

2. Background

In this section, we give an overview of the main char-
acteristics of automotive systems. Futhermore, we point out
how IT security is interrelated with these systems and thus,
why it is important to consider IT security.

2.1. An Overview of Automotive Systems

In general, it is supposed that appr. 98% of the software
worldwide is implemented in embedded systems [11]. Even
automotive systems, i.e., the skeleton of today’s off-the-
shelf cars, make no exception to this fact. Such systems are
characterized by a frequent interaction of their components,
in detail, dozens of ECUs, sensors and actuators which leads
to a complex networked IT system. These interactions are
mainly reflected by a frequent exchange of data, which leads
to a data-centered character of the overall system. In Figure
1, an excerpt of an automotive system is depicted. The
different components can be grouped into different subbus
systems, which are in our example theInfotainment, Comfort
and Power Train subbus system. However, for decreasing
hardware costs (e.g., by saving wires) and because a notable
amount of components is not limited to a certain subbus



system (regarding their functionality), such a physical rep-
resentation is not appropriate anymore. Rather a logical view
(considering the functionality within the overall system)
should be used to reflect the scope of particular components.

Figure 1. Exemplary Part of an Automotive System

Because each component is a self-contained embedded
system, the overall system exhibits a highly heterogeneous
character, the more, as different ECUs are provided by dif-
ferent manufacturers. Since this structure already establishes
a high complexity of automotive systems, it also makes it
a complex and difficult task to develop software for such
systems. This is a serious problem, expecially regarding the
demands for reliability and safety in such systems. Another
challenging task for the software development results from
the very restricted conditions and resources in automotive
systems. A micro controller commonly used in such environ-
ments is characterized by memory of 50-100 KB (distributed
over RAM and EEPROM) and computing power of 10-20
MHz. Furthermore, such systems exhibit real time require-
ments in the dimension of less than 10 ms. Thus, software
development is a crucial task for automotive systems (e.g.,
regarding complexity or reliability) and subject to current
software engineering research.

2.2. The Importance of IT Security

Along with the mentioned fundamental changes within
automotive systems, the IT security becomes an important
issue. Per definition, IT security means reliability in terms
of preserving security aspects of information [8], namely
integrity, availability, authenticity, non-repudiability, confi-
dentiality and privacy. Because of its networked character,
automotive systems exhibit vulnerabilities to malicious at-
tacks, which, in turn, can violate one ore more aspects of
IT security. The access for the execution of an attack on
the system can take place in multiple forms fromoutsideor
inside the car, as shown in exemplary case studies reported
in [12], [13], [14]. Regardless how access is achieved by
the user, the basic attack principle is always the same.

It aims at influencing a certain behaviour or state of the
automotive system. Since this is done by manipulating the
respective functionality (e.g., by introducing maliciouscode,
communication or manipulating data), it directly addresses
the software responsible for this functionality. Subsequently,
it is reasonable to ensure the IT security of the respective
software in order to increase the security of the overall
system.

3. Problem Statement

As already stated, automotive systems more and more
rely on software to fulfill certain functionalities. Further-
more, the complexity of such systems steadily increases,
while the reliability has to be ensured. Alltogether, this
is a challenging task to be managed during the software
development process of such systems. Hence, different ap-
proaches of software development found their way into the
systems engineering domain in order to overcome these
challenges. For instance,software product lines (SPL)as
a special concept of software engineering (SE) are used
to manage commonalities and variabilities of automotive
software [2], [6]. Another common practice is model-based
development (MBD) of software for automotive systems,
where functionality is described1 by models [15], [16].
Afterwards, the code is generated automatically based on
these models. Finally,requirements engineering (RE)gains
more and more importance within automotive systems since
a good requirements analysis is inevitable for all other stages
of the development process.

However, since all mentioned techniques and concepts
address the (decrease of) complexity of the system, they
often omit one issue, which is important for the reliability:
the IT Security. Although the IT security could be integrated
into these concepts, it is either considered sparingly or
even ignored at all. Moreover, the final code is retrofitted
with regard to known vulnerabilities. This, in turn, not only
endangers the reliability of the system but also counteracts
the effort which is invested for decreasing the complexity.

4. Specifying Security Requirements - A
Model-Based Approach

The approach we propose for specifying security require-
ments is twofold. The first part consists of a model which
describes the underlying (automotive) system. In this regard
we pay special attention to the particular functionalities,
realized by the modeled system (e.g., using software) and the
data utilized and exchanged for this purposes. The second
part is a formalism which describes how security require-
ments can be propagated semi-automatically throughout the

1. This includes the specification as well as design or implementation of
the functionality.



system, represented by the model. While the first part is
considered in the following in more detail, the second part
is subject to Section 5.

4.1. Functional Dependencies in Automotive Sys-
tems

As already mentioned, the physical dependencies between
ECUs, sensors, and actuators (in the following referred to as
nodes) which is embodied by subbus systems, becomes more
and more blurred. Moreover, it is reasonable to consider the
dependencies resulting from the functionality executed in
automotive systems. The overall functionality can be divided
in partial functionalities. For each partial functionality a set
of nodes is responsible for its correct execution. To this end,
the respective nodes exchange information, e.g., in form of
data. This, in turn, evokes dependency relations between
nodes of a partial functionality, since a certain node relies
on the information of other nodes.

Considering these functional dependencies is advanta-
geous for several reasons. First, it provides alogical view
on the overall system, which abstracts from the detailed
underlying architecture. Consequently, the complexity can
be decreased for the dependency considerations. Second, it
allows for a detailed investigation of dependencies, because
we can focus on a very small set of dependencies, occurring
in one partial functionality. Reversely, we can merge several
partial functionalities in a bottom-up fashion to achieve a
more coarse-grained overview of the logical structure and
its existing dependencies. Thus, this approach is scalable
which supports even the consideration of large-scaled logical
structures (like automotive systems) and its dependenciesin
particular.

4.2. Function Net Modeling

With the logical architecture in mind, a model is needed
reflecting this view, its dependencies and potential vulnera-
bilities of certain nodes. Since we consider partial function-
alities and the corresponding interactions of the responsible
nodes, it is reasonable to usefunction netsas the modeling
approach. In the recent past, this has already been done
in order to achieve an overview (of functions) on a more
abstract level or to reduce modeling complexity [17], [18].
For modeling such function nets, theSysML [19] can be
used, which comes along with two main advantages. First,
it has been developed and standardized explicitly for the
usage in system engineering, which is the context of our
target domain as well. Second, SysML supports modeling
functional dependencies by special components, e.g.,block
definition diagrams (bdd)or internal block diagrams (ibd).
With the help of these components, it is possible to model
the logical architecture with different degrees of granularity.

A function net based on SysMl could be structured as
follows. The used components, calledblocks, encompass
corresponding devices in a black box manner. For instance,
the Input Control Systemblock encompasses devices (e.g.,
ECUs) used for the input of data to the navigation system.
Different blocks can be connected byports, which indicates,
that they exchange data (and the direction of the data flow).
Furthermore, a port specification can be used to indicate
which data is exchanged. Despite this enclosed block notion,
functional dependencies may exist beyond the boundaries
of a certain block. However, since this model is useful
for a first, logical overview of the considered system, it is
not helpful to investigate functional dependencies in detail.
Therefore, we use the already mentionedinternal block
diagrams. With the help of such a diagram, we can achieve
an insight view of one or more blocks. As a result, we can
achieve a complete description of the logical architectureof
the system.

However, since we are only interested in the data flow
(which establishes the dependencies by our means), we even
abstract from the introduced SysML model for the rest of
this paper. Therefore, we introduce our own model repre-
sentation, which is exemplary depicted in Figure 2 for the
navigation system. Note, that this abstract representation is
at least equivalent to the SysML model from a logical point
of view. The model consists of several nodes representing
existing automotive hardware, namely ECUs, sensors and
actuators (which would be visible in theibd of the SysML
model). Furthermore, in our example a special node exists,
representing the user which is subject to the authentification.
It is worth to note, that all nodes could have an unique
representation as well. However, we differentiate between
these nodes to provide additional semantic information to
the respective stakeholder.

Additionally, directed and named edges are used to con-
nect certain nodes (which is done byports in the SysML
model). These edges describe the information flow (or data
flow respectively) between nodes connected by them, where
the names of the edges represent the exchanged data. By
the usage of nodes and edges we can even divide a partial
functionality in several graphs. In the context of the model,
every graph represents a certain feature within the function
net. For instance, thenavigation inputfeature is composed
of the nodesoperating unit, input control, navigation unit
and the respective edges connecting them.

This graph-based view decreases the complexity of the
model further, since it supports the user in extracting nodes,
exhibiting dependencies, from the function net. Another
character of this view is that it allows for observing the
inheritance of data by illustrating the information flow
and thus, the inheritance of potential vulnerabilities canbe
tracked as well. Based on this view, we can also define two
general types of node: aProviderand aConsumernode. The
former provides information (in form of data) to one or more



Figure 2. Abstract Model Representation of the exemplary Funcion Net for Navigation System

nodes while the latter consumes information. In particular
cases, a node can be both, a providerand a consumer, e.g.,
the navigation unitnode in Figure 2. These node types are
helpful for our requirements analysis approach, because it
allows for preliminary predictions if certain security aspects
are required. An overview of the relation between node type
and typical security aspects is given in Figure 3.

Security Aspect Required by Measure by

Confidentiality(C) Provider Both
Integrity (I) Consumer Both
Availability (A) Consumer Provider
Authenticity (U) Consumer Both
Non-Repudiability(N) Both Both
Privacy (P ) Provider Provider

Figure 3. Relevance of Security Aspects regarding the
Node Type

In the following section we point out how this modeling
approach can be used for security requirements specification
on a holistic level, i.e., for the whole automotive system.

5. Formalization of Security Requirements

The modeling approach, introduced in the previous sec-
tion, is useful for identifying security requirements in a fine-
granular manner. Nevertheless, it is still insufficient since
the model has to be investigated manually for identifying
these requirements with regard to the dependencies of the
underlying system. This is a cumbersome and tedious work
which furthermore can lead to incomplete requirements.
To overcome this shortcoming, we propose a formalization
which aims at a semi-automatic propagation of security
requirements within a function net model, based on certain
information like required security aspects or data flow. The
results of this formalization are propositions, whether a

certain security aspect has to be fulfilled by a certain node
of the system (with respect to a certain data item).

Firstly, we make some definitions, needed for the formal-
ization. Amongst others, these definitions represent different
components of the abstract model representation (cf. Figure
2). The definitions are as follows:

• V = {v1, . . . , vnv} is the set of all nodes within the
automotive system (AS), e.g., ECU.

• D = {d1, . . . , dnd} is the set of data, contained and
exchanged within the AS.

• All edges are defined asE = {e1, . . . , ene}. A particu-
lar edge is a tripleei = {vj , vk, di}, where(vj , vk) ∈ E
are the nodes connected by this edge anddi is the data
exchanged between these nodes (= edge name).

• All graphs are defined as setG = {G1, . . . , Gng}
with Gm = {Vm ⊂ V,Em ⊂ E, sm, tm, dm ∈ D}
as a particular graph. The functionssm, tm : E → V
assign a source node (source) and a target node (target)
respectively to a particular edge [20].

• All function nets are encompassed asFN =
{f1, . . . , fnf} with a particular function netfmi =
{Gi ⊂ G}.

• Finally, the security aspects are represented by the set
S = {I, U,A,C,N, P} (cf. Figure 3). Additionally,
we define two subsets, representing the security aspects
for the two node typesProvider and Consumer(cf.
Figure 3). To this end,CR ⊂ S = S/{C,P} is the
set of typical security aspects possibly required by the
node typeConsumerandPR ⊂ S = S/{I,A, U} the
respective set for the node typeProvider.

With the help of these definitions, we can now formalize
how security requirements are propagated within and across
function nets. In order to do this, we choose a bottom-
up approach, i.e., we initially start our formalization with
single graphs (which correspond to a feature in a partial
functionality) and apply multilevel composition until we
achieve a formalization for the whole system.



Security Requirements for a Single Graph

As a precondition for our formalization, we assume, that
all function nets for an automotive system exist (in the
best case, there is one huge function net). Subsequently,
these function nets are divided into graphs, where a single
graph represents a feature of a partial functionality (e.g.,
considering thenavigation inputfeature of ournavigation
systemfunction net). Such a single graph is identified by
the data item which is exchanged between the nodes of this
graph. As a result, a single graph can be defined as follows:
Gm = (Vm ⊂ V,Em ⊂ E, sm, tm, dm ∈ D).

As a first step, we now have to determine the initial values
for an arbitrary nodevi in this graph (with respect to data
item d). As a constraint, this node has to communicate the
data item to at least one other nodevx in the graph, i.e.,
{(vi, vx) 7→ vx} ∈ tm. The initialization is described by
Equation (1). It determines, if a security aspectsi has to be
considered for a data itemdj at a certain node.

necvi,dj
(si) =







1 vi, dj
requires

→ si ∈ A

0 else
(1)

Based on this initial node, the security requirements of
all other nodes of the respective graph should be derived
automatically as far as possible. As an intermediate step,
we determine in Equation (2) if a particular security aspect
is relevant for a certain node in the graph. Therefore, we
take the node typesConsumer (C)and Provider (P) into
account.

relNT (vx, si) =











1 (Type(vx) =′ C ′ ∧ si ∈ CR)∨
(Type(vx) =′ P ′ ∧ si ∈ PR)

0 sonst
(2)

Considering our formalization up to now, we can assign
initial values to an arbitrary node and we can check if a
certain security aspect is relevant for a certain node. We now
need two further conditions to be fulfilled for a propagation
of security requirements. First, the source and the target node
(vn and vm) have to be adjacent, which is expressed by
Equation (3). The second condition is, that a directed edge
between the source node and target node exists, which is
expressed by Equation (4)

adjacent(vn, vm) ⇔ (vn, vm) ∈ Em (3)

inherit(vn, vm) ⇔ adjacent(vn, vm)

∧ {(vn, vm) 7→ vm} ∈ sm (4)

With the previously defined equations we are now able to
specify the propagation of a security requirementsi ∈ S

from one node to another one. Keep in mind, that the
equations are only valid, if the security aspect is required
for the considered data item. The complete equation for
describing this propagation is given in equation (5).

delegate(vn, vm, si) ⇔ inherit(vn, vm)

∧ relNT (vm, si)

∧ vecnvn,dm
[si] = 1 (5)

Composing Graphs to Function Nets

After specifying the security requirements for all graphs of
a function net in the described manner, these graphs have to
be composed to the original function net (with the obtained
information about security). Along with this process it has
to be considered that nodes which occur in multiple graphs
may only occur uniquely in the final function net. Hence, we
use theunion operation to describe this composition, which
is expressed in Equation (6).

fm =

j
⋃

k=1

Gjwith k, j ∈ N, j ≥ 1 as #Graphs (6)

Furthermore we have to take into account, that at each
node the information about security requirements is available
for every data item which is processed at this node. For
instance, the nodenavigation unit in Figure 2 manages
several data items, e.g.,destinationor traffic info. In the
composed function net the security requirements for each
data item have to be stored separately. However, this is more
a design and implementation problem than a conceptual one.
One possibility is to store information about security aspects
in vector-like structures for each data item.

6. Conclusion and Future Work

In this paper, we pointed out the importance of IT
security in automotive systems and how does it relate to
the software development process of such systems. As a
result, we proposed to integrate IT security considerations
from the very early beginning of this process, e.g., the
requirement analysis. Therefore, we proposed an model-
based approach, which aims at specifying security require-
ments within function nets, where a function net provides
a view on the logical architecture of the system. In order
to automate this specification process as far as possible, we
furthermore introduced a formalization which describes, how
security requirements can be propagated across a function
net. Since this formalization is just a conceptual idea up
to now, it could be used for implementing the security
specification (e.g., by extending existing tools). However,
the presented approach is just the result of a first, abstract



idea of increasing security awareness in automotive systems.
It can be improved from several points of views. For
instance, we intend to evaluate how this approach can be
applied to Simulink models, which are widely-used in the
automotive domain and where we meet rather signals than
data items. Furthermore, we want to extend our own model
representation, e.g., by using attributed or types graphs.
This could be helpful by considering larger graphs with
more than one data item. Moreover, it is reasonable to
think about how to deal with composed or derived data.
However, the probably biggest challenge is to find ways how
to evaluate security specifications with respect to suitable
countermeasures. In detail, we want do discover rules, which
more or less automatically state, whether a countermeasure
is needed and, if so, what is the most suitable one.
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