Advanced Analysis for Code Clone Removal*

Sandro Schulze, Martin Kuhlemann
University of Magdeburg, Germany
{sanschul, kuhlemann}@iti.cs.uni-magdeburg.de

1 Introduction

Code cloning, i.e., the process of replicating code
fragments by copy-paste(-and-adaption), is common
in software development [1]. Although it comes
along with some short-term advantages (e.g., time-
to-market or reusing functioning code), it has crucial
drawbacks in the long run, e.g., increased maintenance
costs or inconsistent changes [1]. As a consequence,
it is important to be aware of such code clones in the
system. To this end, clone detection techniques have
been proposed and widely applied [1]. However, the
detection of clones is not enough but further process-
ing steps are necessary to overcome or at least mini-
mize the mentioned drawbacks.

One approach which aims at a durable elimination
of code clones is refactoring [2]. Several approaches
exist (e.g., [3, 4]), that differ in the underlying clone
detection technique and thus, in the information pro-
vided for the refactoring process. However, each of
these approaches has one or more of the following
problems:

e Only some refactorings are provided (mostly Ez-

tract Method and Pull Up Method [2]) and thus,
a considerable fraction of clones is not covered.

e The information passed to the refactorings allows
only the removal of coarse-grained clones (e.g.,
functions) which furthermore have to be of spe-
cific types [5].

e All approaches provide an automated, non-
interactive refactoring process. This, in turn, can
lead to problems in maintainability and under-
standability of the refactored code.

e Only object-oriented refactorings (OOR) are con-
sidered, although there may be better approaches
for single problems than OOR.

In this paper we introduce an approach for code clone
removal which will tackle these problems. One main
characteristic of this approach is to take into account
detailed code clone analysis and classification as well
as how the analysis results are presented to the user
in order to guide an interactive removal process.

*The work was founded in parts by the Metop Research
Institute, Sandtorstrasse 23, 39106 Magdeburg

2 Code Clone Analysis to prepare
Refactoring

Our approach for supporting code clone removal is
two-staged. In the first stage, a detailed analysis of de-
tected code clones is performed. In the second stage,
we focus on how the results of stage 1 can be presented
in order to guide an interactive refactoring/clone-
removal process. An abstract overview over the work-
flow of our approach is depicted in Figure 1. In the
following we explain these stages in detail.

The Analysis Stage. This stage encapsulates a de-
tailed analysis process, divided into one preprocessing
and multiple postprocessing steps. The input for this
stage are the detection results of existing clone detec-
tion tools. Currently, we are using CCFinder [6] as
clone detector, but in general, any other tool is pos-
sible as well. In the preprocessing, we merge code
clones, that have been detected to be similar to each
other, to clone classes. After that, we classify these
clone classes regarding the type of the cloned artifacts
(e.g., function, loops etc.). Finally, we investigate the
clone classes which can be decomposed into smaller
clone classes. In case of finding, we divide the affected
clone class.

Subsequently, the preprocessing phase starts, con-
sisting of two main aspects: further classification and
similarity measures. First, an Abstract Syntax Tree
(AST) is generated for all code clones. Then, the
clone classes are classified by the occurence of their
members in the class hierarchy. Possible categories
for this classifcation are all code fragements with same
superclass or code fragments with different superclass
as well as further nuances between these opposites. A
second classification takes the occurence of clones in
the file system into account as described in [7]. The in-
formation gained through categorization can be used
for assessing heterogeneity or homogeneity of clone
classes. Within a clone class each clone pair is com-
pared line-by-line (using additional information from
semantical analysis). The similarity of each line is
evaluated according to the terminology of Koschke [5],
i.e. two lines can be classified as identical, similar or
pretty differing. To analyze the result, we relate the
clones of a clone pair line-by-line in a matrix man-
ner. Thus, we obtain a matrix for each clone pair of
a clone class which we use for further reasoning. As a

Code Clone Removal Process

L

] . |
i Anelysts P Rasult Handling }
’ Simiaity | | {—————— : i
: Measures | Satisis L ———— :
|) J v i
] : :
Clone Detection i Pre-Processing Processing i T .
] Steps | Removal '
| 1
i |
] . :
] i :

——————— L0
|

I
Reasoning | SR
Classification |

e

Figure 1: General Structure of the Code Clone Removal Process

next step, all (clone pair) matrizes of one clone class
are merged in order to evaluate the similarity of the
whole clone class. The benefit of this approach is, that
we can determine the type of a clone class but beyond
that, we can also determine how much of the clone
class (and its clones) is of that type (according to the
terminology in [5]). The similarity analysis is further-
more supplemented by the identification of referenced
methods, fields etc. for each code clone. We use this
detailed information, amongst others, to visualize dif-
ferences between code clones in the second stage, e.g.,
by syntax highlighting.

The Result Handling Stage. This second stage
presents the gathered information of the analysis stage
to the user. Thereby, it is important to provide the
user with different views on clones as well as with ab-
stract information about every clone’s origin. On this
basis, we can now decide whether to remove them or
not. For instance, we consider it useful to provide
information about heterogeneity /homogeneity of the
clone classes but also about their similarity. Further
interaction options like browsing, searching, or filter-
ing for certain types of clones (including all introduced
classifications) are possible as well. To this end, this
stage contains a reasoning and statistics part (cf. Fig-
ure 1).

Since we focus on code clone removal, all informa-
tion finally form a removal proposal, consisting of one
ore more refactorings. The following refactoring pro-
cess will be semi-automatic, similar to the refactoring
engine of Eclipse [8].

The result handling stage in general and the refac-
toring process in particular are highly related to tool
support, that presents information to the user.

We currently develop such a tool that implements
our vision. Until now, the preprocessing phase and
small parts of the result handling stage are imple-
mented. As a matter of future work, we want to
provide rules, which allow to propose a multi-staged
removal process (e.g., "first, apply refactoring X and
then apply refactoring Y”) to the user. Furthermore,
we want to take aspect-oriented refactorings in ac-
count [9]. Technically, we intend to establish trace-
ability for removed code clones in order to avoid de-

creased understandability. To this end, we present
information to the user about previous code clone re-
movals on the underlying code, e.g., by using annota-
tions or a system-wide history.

References

[1] C. Roy and J. Cordy, “A Survey on Software
Clone Detection Research,” School of Computing,
Queen’s University at Kingston, Tech. Rep. 2007-
451, 2007.

[2] M. Fowler, Refactoring - Improving the Design of
Exzisting Code. Addison Wesley, 2000.

[3] M. Balazinska et al., “Advanced clone-analysis
to support object-oriented system refactoring,” in
Proc. of the Working Conf. on Reverse Engineer-
ing, 2000.

[4] M. Rieger, S. Ducasse, and G. Golomingi, “Tool
Support for Refactoring Duplicated OO Code,” in
Proc. of the Workshop on Object-Oriented Tech-
nology, 1999.

[5] R. Koschke, “Survey of Research on Software
Clones,” in Proceedings of Dagstuhl Seminar
06301: Duplication, Redundancy and Similarity in
Software, 2006, p. 241f.

[6] T. Kamiya, S. Kusumoto, and K. Inoue,
“CCFinder: A Multilinguistic Token-Based Code
Clone Detection System for Large Scale Source
Code,” in IEEFE Trans. Soft. Eng., 2002.

[7] S. Schulze, M. Kuhlemann, and M. Rosenmiiller,
“Towards a Refactoring Guideline Using Code
Clone Classification,” in 2nd Workshop on Refac-
toring Tools, Companion of OOPSLA, 2008.

[8] R. M. Fuhrer, M. Keller, and A. Kiezun, “Ad-
vanced Refactoring in the Eclipse JDT: Past,
Present, and Future,” in Workshop on Refactor-
ing Tools, 2007.

[9] M. Monteiro and J. Fernandes, “Towards a Cata-
log of Aspect-Oriented Refactorings,” in Proc. of
the Int’l Conf. on Aspect-Oriented Software Devel-
opment, 2005.

