
Ontology-based Model Comparison

Katharina Wolter, Thorsten Krebs, Lothar Hotz

HITeC e.V. c/o University of Hamburg
kwolter, krebs, hotz @ informatik.uni-hamburg.de

Abstract. This paper proposes an ontology-based ap-
proach for comparing software products modelled with
UML. An ontology is used that defines the structure of
all software products developed so far or even all products
that can be developed using the specified architecture. Us-
ing such an ontology the models of different software prod-
ucts can be compared more effectively.

1 Problems in Comparing UML Mod-
els

UML (Unified Modelling Language1) models are of-
ten used to specify software products. The modelling
facilities of UML include, among others, classes that
can be used to represent the product’s components
(of any kind), attributes that describe properties of
a class, specialisation relations for modelling a taxo-
nomic hierarchy of classes and compositional relations
(i.e. aggregation and composition) for modelling a
partonomy of classes. With these modelling facilities
the product architecture can be specified.

Typically, one UML model represents one software
product. This means that for every product a new
model is created and that there is no direct relation
between the models of different products. Compar-
ing products – i.e. comparing models – is hampered
by the fact that there is no such relation between the
different product models. A lexical comparison, for
example can test for occurrence of classes with iden-
tical names in different models, but the outcome of
this comparison heavily depends on the naming of
classes. Two semantically identical classes with dif-
ferent names will not be recognised as being identical
or similar when using a lexical comparison.

The properties and relations of a class have to be
compared rather than their names. Single classes can
be compared according to their position in the taxon-
omy: distance in the taxonomic hierarchy is a heuris-
tic similarity measure. Sub-graphs of classes can be
compared according to their compositional relations:
comparing parts in partonomy is a heuristic similarity
measure, as well.

2 Formalising Software Product Mod-
els in Structure-based Configuration
Models

Configuration is a well-known approach to assemble
products from a given set of components. The com-
ponents are specified as concepts together with their

1http://www.uml.org/

attributes and relations to other components in a con-
figuration model. Structure-based configuration ex-
plicitly defines a taxonomy and partonomy of all con-
figurable components, forming an AND/OR graph2.
Thus, a configuration model is a kind of ontology, but
it contains additional knowledge entities: like con-
straints that define restrictions between a number of
concepts and their properties. Within a configura-
tion model, all admissible configurations are specified.
One specific product is configured by selecting a com-
ponent and configuring its descendants in both the
taxonomic and compositional relations.

When a product is configured, instances of the con-
cept definitions are created dynamically during the
configuration process. Having product instances (i.e.
configuration solutions) it is known from which con-
cepts the instances have been instantiated. This en-
ables the comparison of two distinct product models
based on the configuration model.

Traditional application areas for configuration are
technical domains like automobiles, computers, drive
systems, etc. But the configuration approach is not
limited to this field. The ConIPF (Configuration in
Industrial Product Families) project3, for example,
has shown that configuration is also applicable for
software domains [Hotz et al. 2006].

3 Using Ontology to Model Software

Similar to configuration models from structure-based
configuration, multiple software products can be spec-
ified in one model. Its ontological structure enables
the creation of both taxonomy and partonomy of the
software components. Figure 1 shows how software
can be modelled from modules, applications and li-
braries. An application is composed of modules and
can use external libraries. Modules can be further
decomposed, like a software module that consists of
multiple class definitions, and aligned in a taxonomic
hierarchy defining general concepts and their special-
isations. All entities are software elements.

3.1 Building the Ontology
There are two ways how to define an ontology of soft-
ware products: predefining it and incrementally build-
ing it from singe product models.

2Partonomy is considered to be conjunctive (select some of
the parts) while taxonomy is disjunctive (select one of the spe-
cialisations).

3http://www.conipf.org



Figure 1: Modelling Software using specialisation re-
lations and compositional relations (UML Notation).

Predefining a software ontology means first design-
ing the architecture to derive products from and de-
signing and implementing the components and after-
wards assembling new products based on this architec-
ture. This is a typical approach in configuration [Hotz
and Krebs 2003] or (software) product lines [Clements
and Northrop 2002].

Incrementally building a software ontology from
single software product models includes refinement of
the product architecture for every software product to
be included. Concepts representing existing compo-
nents can simply be linked to the concept representing
the product while new concepts have to be introduced
for components that are not yet modelled. For every
product included in the software ontology the archi-
tecture is extended. It is therefore essential that the
ontology is thoroughly checked for consistency. Tool
support is expected to improve this process.

While the first approach for building the ontology
requires a larger initial effort the second can result
in larger restructuring effort for integration of further
product models.

3.2 Comparing Two Software Models
with an Ontology

Let us consider an example: a family of text editors
is modelled in an ontology. A concept representing
the editor itself aggregates concepts that represent the
editor’s components.

Figure 2 shows how two different text editors can be
modelled within one software model. The lightweight
editor has a find module, while the heavyweight editor
has a find-and-replace module. The find-and-replace
module is further composed of a find module and a
replace module.

Having such a model, the architecture of multiple
products that have been created with this model can
be compared more effectively. Lexically comparing
the find module and the find-and-replace module, no
similarity would be recognised. Using the ontology
that defines the product’s architecture one can addi-
tionally recognise that the find module is a part of the

Figure 2: Modelling different software products within
one model (UML Notation).

find-and-replace module. This means that latter sub-
sumes the former. Thus, both modules – and therefore
both products – are similar!

Acknowledgement

This work is partially funded by the EU:
Requirements-driven Software Development Sys-
tem (ReDSeeDS) (contract no. IST-2006-33596).
The project is coordinated by Infovide, Poland with
technical lead of Wasaw University of Technology
and with University of Koblenz-Landau, Vienna Uni-
versity of Technology, Fraunhofer IESE, University
of Latvia, HITeC e.V. c/o University of Hamburg,
Heriot-Watt University, PRO DV, Cybersoft and
Algoritmu Sistemos.

References

[Clements and Northrop 2002] P. Clements, L.
Northrop: Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[Hotz and Krebs 2003] L. Hotz, T. Krebs: Configu-
ration - State of the Art and New Challenges. In Pro-
ceedings of 17. Workshop, Planen, Scheduling und
Konfigurieren, Entwerfen (PuK2003), pp. 145-157,
Hamburg, Germany, 2003.

[Hotz et al. 2006] L. Hotz, K.Wolter, T. Krebs, S.
Deelstra, M. Sinnema, J. Nijhuis, and J. MacGregor.
Configuration in Industrial Product Families - The
ConIPF Methodology. IOS Press, Berlin, 2006.


