
Type-Oriented Construction of Web User Interfaces
– Extended Abstract –

Michael Hanus

Institut für Informatik, CAU Kiel, D-24098 Kiel

mh@informatik.uni-kiel.de

Abstract

We propose a new technique for the high-level con-
struction of type-safe web-oriented user interfaces.
Our approach is useful to equip applications pro-
cessing structured data with interfaces to manipulate
these data in an efficient and maintainable way. The
interfaces are web-based, i.e., the data can be manipu-
lated with standard web browsers without any specific
requirements on the client side. In order to support
type-safe user interfaces, i.e., interfaces where users
can only input type-correct data (types can be stan-
dard types of a programming language as well as any
computable predicate on the data), we propose a set of
type-oriented building blocks from which interfaces for
more complex types can be easily constructed. This
technique leads to a very concise and maintainable
implementation of web-based user interfaces.

1 Introduction

The construction of user interfaces for applications
manipulating structured data is usually a complex and
often tedious task. In many cases the effort to im-
plement a user interface is equal or even bigger than
the implementation of the application itself. Thus,
there is a demand to support the efficient construc-
tion of maintainable user interfaces. In this paper we
propose a new technique for the case of web user in-
terfaces (WUIs) where the client uses a standard web
browser for communicating with the application.

Our approach is useful in situations where a web-
based editor should be constructed for data of an ap-
plication program, i.e., the user should be provided
with an HTML form to manipulate some data of the
application (see Fig. 1). For this purpose we assume
that the application program supplies the WUI with
the current data of the application and an operation to
store the modified data. It is obvious that this is not
a restriction since application programs usually have
such a functionality. Using our concept, nothing more
is required to construct WUIs in a high-level way by
a few lines of program code. Our programming model
can be characterized by the following features:

• The construction of a WUI is type-oriented, i.e.,
the definition of a WUI follows the structure of
the data types of the application.

• There is a set of basic WUIs to manipulate data
of basic types, e.g., integers, truth values, strings,
finite sets. This set can be easily extended since
there is a clear methodology to implement such
basic WUIs.

• There is a set of WUI combinators to construct
WUIs for complex data types from simpler types
similarly to type constructors in programming
languages. For instance, there are combinators
for tuples, lists, union types etc.

• It is ensured that an update of the data is only
performed with type-correct inputs. If the user
tries to input illegal data (e.g., incorrect integer
constants), the WUI does not accept the data
and ask the user to correct the input. Thus, the
application program need not check the data and
perform appropriate actions (e.g., providing error
forms to correct the input etc).

• Type-correct inputs (in the sense of types used in
programming languages) are often not sufficient
in real applications. For instance, strings contain-
ing email addresses must have a particular form, a
date like “February 29, 2006” is illegal, or two in-
put fields containing a password and the repeated
password must be always identical. For this pur-
pose, WUIs can be restricted with any computable
predicate so that input data is only accepted if
it satisfies the specified predicate. Furthermore,
WUIs can be customized to provide application-
specific error messages in case of illegal inputs.

• WUIs can be adapted to other data types in order
to provide a simple method to define WUIs for
user-defined data types. For instance, there exist
WUI combinators for tuples that can be easily
adapted to a user-defined record type by mapping
tuples to records. Although this method is of-
ten sufficient to construct WUIs for user-defined
types, there is also a methodology to extend the
standard set of WUI combinators with new ap-
plication specific combinators.

In principle, our ideas can be implemented in various
programming languages. However, in order to sup-
port a compact, high-level, and type-safe implemen-



Figure 1: A WUI for a list of persons

tation, some requirements to the underlying program-
ming language are necessary. Therefore, we provide a
concrete implementation of our concept in the declar-
ative multi-paradigm language Curry [1, 3]. The inte-
gration of functions as first-order objects, logic vari-
ables, and strong typing, as available in Curry, is ex-
ploited in our implementation.

2 Constructing Web User Interfaces

Our only requirement to the application program is
that it supplies the WUI with the current state of the
data and an operation to store the data modified by
the user. Thus, the main operation to construct a
WUI has the type signature

mainWUI :: WSpec a -> a ->

(a -> IO HtmlForm) -> IO HtmlForm

so that an expression (mainWUI wspec d store) eval-
uates to a web page containing an editor that shows
the current data d and executes (store d′) when
the user submits the modified data d′. The opera-
tion store (also sometimes called update form) usually
stores the modified data in a file or database, returns
a web page that informs the user about the successful
(or failed) modification, and proceeds with a further
interaction.

The parameter wspec, also called WUI specifica-
tion, specifies the kind of WUI elements to be used in
the interface. Our implementation provides a number
of predefined WUI elements for particular types. For
instance, to edit simple strings, there is a predefined
entity

wString :: WSpec String

defining a WUI element that shows the string in a
simple text input field.

In order to edit integer values, there is an entity

wInt:: WSpec Int

defining a WUI element that shows an integer in a
text input field. Note that WUI elements are type
safe, i.e., if the user inputs a non-integer in such an

input field, the implementation of the WUI emits an
error message and asks the user to correct the input.

To select elements from a finite set values through
a selection box, there is a WUI element

wSelect :: (a->String) -> [a] -> WSpec a

The first argument is a function to show an element as
a string (shown in the selection box) and the second
argument contains the list of elements to be selected.

Similarly to the use of type constructors for the
construction of complex data types from simpler
types, WUIs for complex types can be constructed
from WUIs for simpler types by WUI combinators. A
WUI combinator is a mapping from simpler WUIs to
WUIs for structured types. For instance, there is a
family of WUI combinators for tuple types:

wPair :: WSpec a -> WSpec b -> WSpec (a,b)

wTriple :: WSpec a -> WSpec b -> WSpec c

-> WSpec (a,b,c)

...

Thus, the expression

wDate = wTriple (wSelect show [1..31])

(wSelect show [1..12])

wInt

evaluates to an HTML form to edit a triple of integers
representing dates.

In order to manipulate lists of data objects, there
is a WUI combinator for list types:

wList :: WSpec a -> WSpec [a]

Thus, (wList (wTriple wString wString wDate))

specifies the WUI shown in Fig. 1. From this sim-
ple specification, the handling of input values, error
correction forms etc. is automatically generated.

In order to adapt standard WUI specifications to
application-specific requirements, our library provides
operations to customize WUIs, e.g., restrict input
fields with specific conditions and appropriate error
messages, define new renderings for WUI elements,
adapt WUIs from one data type to another etc. More
details can be found in the full paper [2].

References

[1] M. Hanus. A Unified Computation Model for
Functional and Logic Programming. In Proc. of
the 24th ACM Symposium on Principles of Pro-
gramming Languages (Paris), pp. 80–93, 1997.

[2] M. Hanus. Type-Oriented Construction of Web
User Interfaces. In Proceedings of the 8th ACM
SIGPLAN International Conference on Princi-
ples and Practice of Declarative Programming
(PPDP’06). ACM Press (to appear), 2006.

[3] M. Hanus (ed.). Curry: An Integrated Func-
tional Logic Language (Vers. 0.8.2). Available at
www.informatik.uni-kiel.de/~curry, 2006.


