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Abstract

This note reports on research which has recently been
presented at the 15th International Conference on
Compiler Construction (CC 2006) in Vienna, Aus-
tria [17]. In this article we have shown that classic
partial redundancy elimination (CPRE), like specula-
tive partial redundancy elimination (SPRE), is a max-
imum flow problem, too. Thereby, we have revealed
the missing link between CPRE and SPRE, and more
importantly, established a common high-level concep-
tual basis for understanding and reasoning about this
important and widely used program optimisation. We
demonstrated this by formulating a new and simple
unidirectional bit-vector algorithm for CPRE, which
is based only on the well-known concepts of availabil-
ity and anticipatability. Designed to find directly a
unique minimum cut for a CFG, which can be proved
simply but rigorously, the new algorithm turned out
to be simple and intuitive, and its optimality self-
evident. We could show that this conceptual simplic-
ity also translates into efficiency. As demonstrated by
our experimental results, the new algorithm outper-
forms its state-of-the-art competitors.

1 Introduction

Partial redundancy elimination (PRE) is a compiler
optimisation which eliminates computations which are
redundant on some but not necessarily all paths in a
program. As a result, PRE encompasses both global
common subexpression elimination and loop-invariant
code motion. Over the years, PRE has also been ex-
tended to perform other optimisations at the same
time, including strength reduction [4, 6, 8, 10], global
value numbering [1] and live-range determination [12].
For these reasons, PRE is regarded as one of the most
important optimisations in optimising compilers.

As a code transformation, PRE eliminates a par-
tially redundant computation at a point by inserting
its copies on the paths that do not already compute
it prior to the point, thereby making the partially re-
dundant computation fully redundant. PRE problems
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come in two flavours: classic PRE and speculative
PRE. Classic PRE, as described in the seminal work
[13], inserts a computation at a point only if the point
is safe (or down-safe) for the computation, i.e., only if
the computation is fully anticipatable at the point. If
the computation cannot cause an exception and if the
execution frequencies of the flow edges in a CFG are
available, speculative PRE may find transformations
which are beyound the scope of classic PRE and hence
missed by it, thereby removing more redundancies in
dynamic terms than classic PRE.

In the case of classic PRE, Knoop, Rüthing and
Steffen invented an optimal unidirectional bit-vector
formulation of the problem [9, 11]. This algorithm,
known as Lazy Code Motion (LCM), was later re-
casted to operate on static single assignment (SSA)
form [7]. Subsequently, a number of alternative formu-
lations have been proposed [3, 4, 5, 14]. While LCM
and other earlier algorithms [4, 5] find code insertion
points by modelling the optimisation as a code mo-
tion transformation, the latter ones [3, 14] avoid this
by identifying code insertion points directly. Appar-
ently, a search for a conceptual basis upon which an
optimal formulation of classic PRE can be both de-
veloped and understood more intuitively has been the
driving force behind these research efforts. Up to now,
however, this conceptual basis has been elusive. All
existing algorithms are developed and reasoned about
at the low level of individual program paths.

While classic PRE is profile-independent, specula-
tive PRE is profile-guided [2, 15]. Given a weighted
CFG, where the weights of the flow edges represent
their execution frequencies, Xue and Cai have shown
previously that speculative PRE is a maximum flow
problem [16]. Finding an optimal transformation on a
CFG amounts to finding a special minimum cut in a
flow network derived from the CFG. Furthermore, dif-
ferent optimal transformations on a CFG may result
if the weights of the flow edges in the CFG differ.

In [17], we have shown for the first time that clas-
sic PRE is also a maximum flow problem. This is the
key to the main contribution of this paper: to pro-
vide a uniform approach for classic and speculative
PRE. The insight behind this finding lies in the fol-
lowing assumption made about classic PRE [9, 11]:
all control flow edges are nondeterministic, or equiva-
lently, have nonzero execution frequencies. We could
show that finding the optimal transformation for a



CFG amounts to finding a unique minimum cut in
a flow network derived from the CFG. Since all in-
sertions in a CFG must be safe in classic PRE (as
mentioned above), this unique minimum cut is invari-
ant of the execution frequencies of the flow edges in
the CFG. This establishes the connection and high-
lights the main difference between classic and spec-
ulative PRE. More importantly, our finding provides
a common high-level conceptual basis upon which an
optimal formulation of PRE can be more systemat-
ically and intuitively developed and proved. Every
PRE algorithm, if being optimal, must find the unique
minimum cut on a flow network that is derived from a
CFG. As a result, tedious and non-intuitive reasoning
that has been practised at the lower level of control
flow paths is dispensed with.

Based on this insight, we have developed a new,
simple algorithm for classic PRE. Our formulation,
applicable to standard basic blocks, consists of solv-
ing four unidirectional bit-vector data-flow problems
based only on the well-known concepts of availabil-
ity and anticipatability. Designed to find a unique
minimum cut in a flow network derived from a CFG,
which is proved simply but rigorously, our data-flow
equations reason positively about the global proper-
ties computed without using logical negations. Such a
formulation is intuitive and its optimality self-evident.
This conceptual simplicity also translates into effi-
ciency, as demonstrated by our experimental results.
Details on this algorithm and the experimental data
can be found in the full version of this paper [17].
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