
A Fresh Look at Partial Redundancy Elimination as a Maximum

Flow Problem (Abstract)∗

Jingling Xue † Jens Knoop ‡

Abstract

This note reports on research which has recently been
presented at the 15th International Conference on
Compiler Construction (CC 2006) in Vienna, Aus-
tria [17]. In this article we have shown that classic
partial redundancy elimination (CPRE), like specula-
tive partial redundancy elimination (SPRE), is a max-
imum flow problem, too. Thereby, we have revealed
the missing link between CPRE and SPRE, and more
importantly, established a common high-level concep-
tual basis for understanding and reasoning about this
important and widely used program optimisation. We
demonstrated this by formulating a new and simple
unidirectional bit-vector algorithm for CPRE, which
is based only on the well-known concepts of availabil-
ity and anticipatability. Designed to find directly a
unique minimum cut for a CFG, which can be proved
simply but rigorously, the new algorithm turned out
to be simple and intuitive, and its optimality self-
evident. We could show that this conceptual simplic-
ity also translates into efficiency. As demonstrated by
our experimental results, the new algorithm outper-
forms its state-of-the-art competitors.

1 Introduction

Partial redundancy elimination (PRE) is a compiler
optimisation which eliminates computations which are
redundant on some but not necessarily all paths in a
program. As a result, PRE encompasses both global
common subexpression elimination and loop-invariant
code motion. Over the years, PRE has also been ex-
tended to perform other optimisations at the same
time, including strength reduction [4, 6, 8, 10], global
value numbering [1] and live-range determination [12].
For these reasons, PRE is regarded as one of the most
important optimisations in optimising compilers.

As a code transformation, PRE eliminates a par-
tially redundant computation at a point by inserting
its copies on the paths that do not already compute
it prior to the point, thereby making the partially re-
dundant computation fully redundant. PRE problems

∗The full version of this work has recently been presented at
the 15th International Conference on Compiler Construction

(CC 2006), (Vienna, Austria, March 30-31, 2006) [17].
†School of Computer Science and Engineering, The Univer-

sity of New South Wales, Sydney, NSW 2052, Australia.
‡Institut für Computersprachen, Technische Universität

Wien, Argentinierstr. 8, 1040 Wien, Österreich.

come in two flavours: classic PRE and speculative
PRE. Classic PRE, as described in the seminal work
[13], inserts a computation at a point only if the point
is safe (or down-safe) for the computation, i.e., only if
the computation is fully anticipatable at the point. If
the computation cannot cause an exception and if the
execution frequencies of the flow edges in a CFG are
available, speculative PRE may find transformations
which are beyound the scope of classic PRE and hence
missed by it, thereby removing more redundancies in
dynamic terms than classic PRE.

In the case of classic PRE, Knoop, Rüthing and
Steffen invented an optimal unidirectional bit-vector
formulation of the problem [9, 11]. This algorithm,
known as Lazy Code Motion (LCM), was later re-
casted to operate on static single assignment (SSA)
form [7]. Subsequently, a number of alternative formu-
lations have been proposed [3, 4, 5, 14]. While LCM
and other earlier algorithms [4, 5] find code insertion
points by modelling the optimisation as a code mo-
tion transformation, the latter ones [3, 14] avoid this
by identifying code insertion points directly. Appar-
ently, a search for a conceptual basis upon which an
optimal formulation of classic PRE can be both de-
veloped and understood more intuitively has been the
driving force behind these research efforts. Up to now,
however, this conceptual basis has been elusive. All
existing algorithms are developed and reasoned about
at the low level of individual program paths.

While classic PRE is profile-independent, specula-
tive PRE is profile-guided [2, 15]. Given a weighted
CFG, where the weights of the flow edges represent
their execution frequencies, Xue and Cai have shown
previously that speculative PRE is a maximum flow
problem [16]. Finding an optimal transformation on a
CFG amounts to finding a special minimum cut in a
flow network derived from the CFG. Furthermore, dif-
ferent optimal transformations on a CFG may result
if the weights of the flow edges in the CFG differ.

In [17], we have shown for the first time that clas-
sic PRE is also a maximum flow problem. This is the
key to the main contribution of this paper: to pro-
vide a uniform approach for classic and speculative
PRE. The insight behind this finding lies in the fol-
lowing assumption made about classic PRE [9, 11]:
all control flow edges are nondeterministic, or equiva-
lently, have nonzero execution frequencies. We could
show that finding the optimal transformation for a



CFG amounts to finding a unique minimum cut in
a flow network derived from the CFG. Since all in-
sertions in a CFG must be safe in classic PRE (as
mentioned above), this unique minimum cut is invari-
ant of the execution frequencies of the flow edges in
the CFG. This establishes the connection and high-
lights the main difference between classic and spec-
ulative PRE. More importantly, our finding provides
a common high-level conceptual basis upon which an
optimal formulation of PRE can be more systemat-
ically and intuitively developed and proved. Every
PRE algorithm, if being optimal, must find the unique
minimum cut on a flow network that is derived from a
CFG. As a result, tedious and non-intuitive reasoning
that has been practised at the lower level of control
flow paths is dispensed with.

Based on this insight, we have developed a new,
simple algorithm for classic PRE. Our formulation,
applicable to standard basic blocks, consists of solv-
ing four unidirectional bit-vector data-flow problems
based only on the well-known concepts of availabil-
ity and anticipatability. Designed to find a unique
minimum cut in a flow network derived from a CFG,
which is proved simply but rigorously, our data-flow
equations reason positively about the global proper-
ties computed without using logical negations. Such a
formulation is intuitive and its optimality self-evident.
This conceptual simplicity also translates into effi-
ciency, as demonstrated by our experimental results.
Details on this algorithm and the experimental data
can be found in the full version of this paper [17].

References

[1] P. Briggs and K. D. Cooper. Effective partial re-
dundancy elimination. In Proc. of the ACM SIG-
PLAN Conf. on Programming Language Design
and Implementation (PLDI’94), volume 29,6 of
ACM SIGPLAN Not., pages 159 – 170, 1994.

[2] Q. Cai and J. Xue. Optimal and efficient
speculation-based partial redundancy elimina-
tion. In Proc. of the 1st Annual IEEE/ACM
Int. Symposium on Code Generation and Opti-
mization (CGO 2003), pages 91 – 102, 2003.

[3] D. M. Dhamdhere. E-path pre: Partial redun-
dancy elimination made easy. ACM SIGPLAN
Not., 37(8):53–65, 2002.

[4] V. M. Dhaneshwar and D. M. Dhamdhere.
Strength reduction of large expressions. Journal
of Programming Languages, 3(2):95 – 120, 1995.

[5] K.-H. Drechsler and M. P. Stadel. A solution
to a problem with Morel and Renvoise’s “Global
optimization by suppression of partial redundan-
cies”. ACM Trans. on Prog. Lang. and Systems,
10(4):635 – 640, 1988.

[6] M. Hailperin. Cost-optimal code motion. ACM
Trans. on Prog. Lang. and Systems, 20(6):1297 –
1322, 1998.

[7] R. Kennedy, Sun Chan, Shin-Ming Liu, R. Lo,
Peng Tu, and F. Chow. Partial redundancy
elimination in SSA form. ACM Trans. on
Prog. Lang. and Systems, 21(3):627 – 676, 1999.

[8] R. Kennedy, F. Chow, P. Dahl, S.-M. Liu, R. Lo,
and M. Streich. Strength reduction via SSAPRE.
In Proc. of the 7th Int.Conf. on Compiler Con-
struction (CC’98), Lecture Notes in Computer
Science, vol. 1383, pages 144 – 158, 1998.

[9] J. Knoop, O. Rüthing, and B. Steffen. Lazy code
motion. In Proc. of the ACM SIGPLAN Conf. on
Programming Language Design and Implementa-
tion (PLDI’92), volume 27,7 of ACM SIGPLAN
Not., pages 224 – 234, 1992.

[10] J. Knoop, O. Rüthing, and B. Steffen. Lazy
strength reduction. Journal of Programming
Languages, 1(1):71 – 91, 1993.

[11] J. Knoop, O. Rüthing, and B. Steffen. Opti-
mal code motion: Theory and practice. ACM
Trans. on Prog. Lang. and Systems, 16(4):1117–
1155, 1994.

[12] R. Lo, F. C. Chow, R. Kennedy, S. M. Liu,
and P. Tu. Register promotion by sparse par-
tial redundancy elimination of loads and stores.
In Proc.of the ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation
(PLDI’98), volume 33,5 of ACM SIGPLAN Not.,
pages 26 – 37, 1998.

[13] E. Morel and C. Renvoise. Global optimization
by suppression of partial redundancies. Commu-
nications of the ACM, 22(2):96 – 103, 1979.

[14] V. K. Paleri, Y. N. Srikant, and P. Shankar. A
simple algorithm for partial redundancy elimina-
tion. ACM SIGPLAN Not., 33(12):35 – 43, 1998.

[15] B. Scholz, N. R. Horspool, and J. Knoop. Opti-
mizing for space and time usage with speculative
partial redundancy elimination. In Proc. of the
ACM SIGPLAN Workshop on Languages, Com-
pilers, and Tools for Embedded Systems (LCTES
2004), volume 39,7 of ACM SIGPLAN Not.,
pages 221 – 230, 2004.

[16] J. Xue and Q. Cai. A life-time optimal algorithm
for speculative PRE. ACM Transactions on Ar-
chitecture and Code Optimization. To appear.

[17] J. Xue and J. Knoop. A fresh look at PRE as
a maximum flow problem. In Proc. of the 15th
Int. onf. on Compiler Construction (CC 2006),
Lecture Notes in Computer Science, vol. 3923,
pages 139 – 154, 2006.


