Model Checking
A Tutorial Introduction

Seminar: Sicherheitskritische Systeme
Modelchecking--Eine Einführung
(Model Checking : A tutorial introduction)
Bearbeiter: Yuguo Sun
Introduction

Motivation, Purpose of System Verification

Examples:

- Pentium bug Intel Pentium chip
- ARIANE Failure
- Therac-25 Accident
Four principal techniques for ensuring the correctness of hardware and software systems:

• Simulation

• Testing.

• Deductive Verification

• Model Checking
System Verification via Model Checking

• What is Model Checking

• Compared with other techniques
The Process of Model Checking

3 Steps of the Model Checking

• modelling

• specification

• verification.
Step.1 --- Modelling

• what is Modelling: convert the system into a formalism. For the modelling of systems we use finite automats.

• owing to limitations on time and memory, the modelling of a design may require the use of abstraction

• We use a type of state transition graph called a Kripke structure to model a system
what is Kripke

A Kripke structure over a set of atomic propositions

AP is a four-tuple; \(M = (S, S_0, R, L) \) where

- \(S \) is a finite set of states.
- \(S_0 \subseteq S \) is the set of initial states.
- \(R \subseteq S \times S \) is a transition relation
- \(L: S \rightarrow 2(\text{AP}) \) is a function that labels each state with the set of atomic propositions true in this state.
Example with micro-oven cooking

Modelling with the Kripke-Structure

\[M = (S, S_0, R, L) \]

- \(S = (S_1, S_2, S_3, S_4) \)
- \(S_1 \) is the initial state
- \(R = (\{S_1, S_2\} \{S_2, S_1\}, \{S_1, S_4\}, \{S_4, S_2\}, \{S_2, S_3\}, \{S_3, S_2\}, \{S_3, S_3\} \)
- \(L(S_1) = \{\neg close, \neg start, \neg cooking\} \)
- \(L(S_2) = \{close, \neg start, \neg cooking\} \)
- \(L(S_3) = \{close, start, cooking\} \)
- \(L(S_4) = \{\neg close, start, \neg cooking\} \)
Graph of the Kripke-Structure M of microwave-oven

Figure: Automat
Step.2 --- Specification

• What is Specification

• Classical Logic

• Temporal Logic
Operators for the Temporal Logic

• five basic temporal

 1. \(X \) (‘‘next time’’)
 2. \(F \) (‘‘in the future’’)
 3. \(G \) (‘‘globally’’)
 4. \(U \) (‘‘until’’)
 5. \(R \) (‘‘Release’’)

• Two quantifiers for the Temporal Logic

 1. \(A \) (‘‘always’’)
 2. \(E \) (‘‘exists’’)
Three main ways to represent Temporal Logic:

• **CTL** (Computation Tree Logic*)

• **CTL** (Computation Tree Logic) with 10 basis operators: AX and EX; AF and EF; AG and EG; AU and EU; AR and ER.

• **LTL** (Linear Temporal Logic)

* Completeness?
Example with microwave-oven cooking

Specification with CTL-Formal

1. $\text{AG } (\text{start } \Rightarrow \text{AF cooking})$

2. $\text{AG } ((\text{close } \land \text{ start}) \Rightarrow \text{AF cooking})$
Step.3 --- Verification

CTL* - Model-Checking
CTL - Model-Checking
LTL - Model-Checking

• Human assistance ? + Error trace
Example with microwave-oven cooking (1)

To the first CTL-Formal : AG (start ⇒ AF cooking)

1) Change formal to ¬EF (start ∧ EG ¬ cooking))
2) From simple partial formulas to the more complicated formulas, until all of the formulas are true.

- S (start) = {S3, S4}
- S (¬cooking) = {S1, S2, S4}
- S (EG ¬ cooking) = {S1, S2, S4} (all conditions lie on a path)
- S (start ∧ EG ¬ cooking) = {S4}
- S (EF (start ∧ EG ¬ cooking)) = {S1, S2, S3, S4} (can be followed with S4)
- S (¬(EF (start ∧ EG ¬ cooking))) = {}

3) Result analyze
Example with microwave-oven cooking (2)

To the second CTL-Formal: AG ((close ∧ start) ⇒ AF cooking)

1) change formal to \(\neg EF(close ∧ start ∧ EG \neg cooking)\)

2) Now the algorithm can be applied to the formula

- \(S (close) = \{S2, S3\}\)
- \(S (start) = \{S3, S4\}\)
- \(S (\neg cooking) = \{S1, S2, S4\}\)
- \(S (EG \neg cooking) = \{S1, S2, S4\}\)
- \(S (close ∧ start ∧ EG \neg cooking) = {}\)
- \(S (EF (close ∧ start ∧ EG \neg cooking)) = {}\)
- \(S (\neg (EF (close ∧ start v EG \neg cooking))) = \{S1, S2, S3, S4\}\)

3) Result analyze
Algorithms for Model Checking

- State space explosion problem
- Number of states typically grows exponentially in the number of process
The major techniques for tackling this problem

- Based on Automata Theory
- Based on Symbolic Structure
- Other Methods -- Alternative Methods
Based on Automata Theory (1)

On the Fly Technology

• Definition

• Intersection in the “on-the-fly” mode checking

• Advantage of on-the-fly model checking
Based on Automata Theory (2)

Partial-Oder Reduction Technology

a) what is interleaving

b) what is partial-order representation

c) Three kinds of the partial-order reduction Technology
 - dynamic partial-order reduction Technology
 - Static partial-order reduction Technology
 - the purely partial-order reduction Technology
Based on Symbolic Structure

- Symbolic Structure with a Boolean formula
- Binary decision diagram (BDD)
- 10^5 states -- 10^{20} states -- 10^{120} states
- SMV language and OBDD (Bryant's ordered binary decision diagrams)
- Successful examples with SMV
Alternative Methods

- Equivalence
- Compositional Reasoning
- Abstraction
- Symmetry
- Induction
Alternative Methods

Equivalence

• What is equivalence technique

• Simulation equivalence and bisimulation equivalence

Compositional Reasoning

• What is compositional Reasoning technique

• An example

• Assume-guarantee reasoning
Alternative Methods

Abstraction
• Abstraction with mapping
• The cone of influence reduction and the data abstraction

Induction
• What is induction technique
• An example

Symmetry
• What is symmetry technique
• Examples
Model Checking for real-time Systems

- What is real-time systems
- Why it is particularly difficult to make the validation of real-time systems

Discrete real-time System
- Synchronous system
- An example
- Rate-monotonic scheduling theory (RMS)

Continuous real-time System
- Asynchronous system
- Fixed time quantum
Model Checking developing Trend

• Relatively straightforward extensions of current systems

• Require more theoretical work

• Use combination of the abstraction and compositional reasoning techniques

• Probabilistic verification

• The ability to reason automatically about entire families of finite-state systems

• Investigation Model Checking techniques combined with theorem proving
Conclusion

• In conclusion

• Apply in industry
Vielen Dank für Ihre Aufmerksamkeit!

Universität Siegen, Fachbereich 12, Elektronik und Informatik, SS 2004