
Preprocessing Texts in Issue Tracking Systems to improve IR

Techniques for Trace Creation

Mihaela Todorova Tomova, Michael Rath, Patrick Mäder
Software Engineering for Safety-Critical Systems

Technische Universität Ilmenau

{mihaela-todorova.tomova, michael.rath, patrick.maeder}@tu-ilmenau.de

Abstract

Multiple studies showed the usefulness of require-
ments traceability in developing software and systems.
Still, a major challenge is to establish the required
trace links among development artifacts. Often, infor-
mation retrieval (IR) techniques combined with text
similarity measures are used for this task. Applying
these ideas to requirements texts found in issue track-
ing systems (ITS) of open source systems is difficult,
because often these texts are structured and not only
contain natural language. Thus, preprocessing of the
textual information is required to extract the differ-
ent kinds of text. In this paper, the authors study the
structure of issue descriptions found in open source
systems and identify several categories of text found
therein, such as source code and stack traces. These
text categories allow a more precise application of sim-
ilarity analysis in order to create traces by comparing
textual information of the same kind, i. e. source code
with source code and natural language with natural
language.

1 Introduction

Requirements traceability is broadly recognized as a
critical element of any rigorous software development
process [2]. Artifacts and the links among them build
graph like structures, which can be efficiently queried
to answer a variety of stakeholder questions about the
system [5]. Furthermore, a high degree of traceability
is beneficial in completing tasks in open-source sys-
tems [9]. However, a major challenge is to identify
relevant traces among the development artifacts. The
authors in [3] show, that often traces are created man-
ually in late stages of the development process, which
results in missing and incorrect links. Thus, automat-
ing this tedious manual task is highly desirable. One
approach is to apply information retrieval (IR) tech-
niques [6] and create traces based on textual similarity
measures.

Issue tracking systems such as JIRA or Bugzilla
are widely adopted to organize software development,
especially in open-source systems. There, developers
use issues to record features, improvements and de-
fects of the systems to build. Additionally, they cre-

ate traces among the issues as well as from issues to
the source code [1]. However, a recent study specifi-
cally of open-source projects showed, that only up to
70% of all issues are linked to source code [7]. The
textual description of the issues can be used to enrich
this set of traces [4]. Nonetheless, a direct application
of text similarity measures using the issue description
might be limited, because often further information is
stored in the text, such as source code or stack traces.
In this paper, we propose a method for preprocessing
issue descriptions to extract this information.

2 Analyzing Issue Descriptions

In JIRA, an issue contains a set of properties e. g. a
type, a short summary, and a long description. The
type categorizes issues e. g. into features, improve-
ments, or bugs. Because of the amount of data, the de-
scription is used for similarity analysis by information
retrieval techniques. However, the developers also use
the description to store information in a structured
way. Still being text, the type of information might be
different from pure natural language. Figure 1 depicts
this situation for improvement PIG-16121 of project
Pig.

It contains two paragraphs (i. e. sections separated
by a newline) of natural language followed by a code
snippet written in the java programming language.

In a pre-study, we manually analyzed issue descrip-
tions of seven open source systems contained in ”The
IlmSeven Dataset” [8] in order to quantify the dis-
tribution of structured information. The results are
presented in Table 1. It shows, that 41% of all fea-
tures and 40% of all improvements in project Groovy
contain not only natural language. The statistics re-
veal, that structured information is quite often avail-
able, i. e. at least in every fifth studied issue, in issues
descriptions. Thus, applying a preprocessing step to
extract this data seems valuable.

During the issue analysis, we discovered three ma-
jor types of information stored in descriptions: text in
natural language, java code, and stack traces. Further-
more, we introduce an unspecified category for text,
which does not fall in any of the other ones. E. g.

1https://issues.apache.org/jira/browse/PIG-1612



Figure 1: Improvement PIG-1612 for project Pig exemplifying structured information in the issue description,
i. e. two paragraphs of natural language followed by a source code snippet.

Table 1: Percentage of issue descriptions containing
structured information for features and improvements
in seven open source projects.

Issue Type

Project Feature [%] Improvement [%]

Derby -† 19
Drools 18 35
Groovy 41 40
Infinispan 18 16
Maven 24 24
Pig 23 23
Seam2 27 33

† Project Derby has no issues of type feature

improvement Pig-50252 contains a large stack trace
and improvement Pig-47473 a Linux rm command,
which both are categorized as unspecified. Figure 2
presents the method to extract these information cat-
egories from descriptions. Afterwards, IR could be
applied purposefully by comparing information of the
same nature, i. e. source code with source code and
natural language with natural language.

3 Preprocessing Issue Descriptions

We propose the following method to process issue de-
scriptions, shown in Figure 3. At the beginning, the
issue description is divided into a list of paragraphs,
which are identified by carriage returns. Afterwards,
the category of each paragraph is identified individu-
ally.

In the first step, the algorithm checks, whether a

2https://issues.apache.org/jira/browse/PIG-5025
3https://issues.apache.org/jira/browse/PIG-4747

Text Preprocessing

Stack Trace

Natural Language

Source Code

Improvement-100 Improvement-205 Improvement-333

Raw Text

Improvement-543

Categorized
Paragraphs

Precise Application
of Textual Similarity Analysis

Figure 2: Categorization of paragraphs of issue de-
scription to allow precise application of textual simi-
larity analysis in order to create traces.

paragraph is a stack trace ¶. Because of its specific
format4, this can easily be achieved by applying a
regular expression. It there wasn’t a match, the al-
gorithm tries to identify the paragraph as java code
·. Again, we use a set of regular expressions describ-
ing typical constructs such as class definitions (e. g.
public class <ClassName> { /∗class body ∗/}), or
methods (e. g. public static int <MethodName>

4http://goo.gl/2X5yAJ



Is
Stack trace?

Is
Java code?

Has
Java Syntax?

Has
NL Structure?

Highest 
Value

Update	sentence	statistics

Stack trace

Split into
Sentences

Java code

Java codeNL

Java codeNLUnspecified

Sentence Analysis

Unspecified

Yes

Yes

YesYes

paragraph

1

2

3

4

6

7

5

Figure 3: Proposed method to categorize paragraphs
from issue descriptions in stack trace, java code, nat-
ural language (NL), or unspecified.

(int var1, int var2) { /∗ method body ∗/}) in order
to match source code. By considering that often in
ITS partial code fragments are contained we want to
check for both opening or closing braces or for at least
the opening brace. If no java code is detected, we
proceed with the next step and check for natural lan-
guage. In this step we need to further examine the
case in which texts may contain parts of source code
and natural language. Here the proposed solution is to
first split the text into multiple sentences ¸. For each
sentence, we check if there is any kind of java syntax
contained. Again, typical java constructs are consid-
ered, such as camelCase followed by equal sign and
ending with semicolon, or TitelCase followed by vari-
able name and also ending with semicolon, or loops
constructs followed by {} or at least the {. These
structures are quite uncommon in pure natural lan-
guage texts, especially the usage of braces. Identifying
these entities provides strong evidence against natu-
ral language and thus the sentence is marked as source
code ¹. Otherwise, we search for evidence, that the
sentence is written in natural language. Therefore, we
inversely apply a technique widely used in text pro-
cessing: stop-word removal. Stop words5, such as can,
will, I are common words found in natural language.
Thus, we use the presence of such words in a sen-
tence as indicator for natural language. Additionally,

5http://goo.gl/Wb2jps

we search for patterns like I + <verb> º. If neither
code nor natural language is detected, the sentence
is marked as unspecified. We count the number of
sentences marked as code, natural language and un-
specified for each paragraph ». The overall category
of the paragraph is derived using the highest sentence
counter ¼.

4 Conclusion and Future Work

One of the most investigated means in literature to
establish trace links is the application of information
retrieval techniques. In this paper, we studied textual
descriptions stored in issue tracking systems. Our re-
search shows, that these descriptions are structured,
whereas their content not only consists of natural lan-
guage text but also of source code fragments, or stack
traces. This is the case for about 25% of all features
and improvements extracted from seven open source
systems. We propose a method to extracts the dif-
ferent parts from the text. Used as a preprocessing
step, this allows to purposefully apply text similar-
ity and information retrieval techniques i. e. by com-
paring natural language with natural language, and
source code with source code.

We plan to apply our method on multiple open
source projects to study its effectiveness for trace cre-
ation using text similarity.

Acknowledgment

We are funded by the German Ministry of Edu-
cation and Research (BMBF) grants: 01IS14026A,
01IS16003B, by DFG grant: MA 5030/3-1, and by
the EU EFRE/Thüringer Aufbaubank (TAB) grant:
2015FE9033.

References

[1] A. Bachmann and A. Bernstein. Software pro-
cess data quality and characteristics: A histori-
cal view on open and closed source projects. In
Proceedings of the Joint International and Annual
ERCIM Workshops on Principles of Software Evo-
lution (IWPSE) and Software Evolution (Evol)
Workshops, IWPSE-Evol ’09, pages 119–128, New
York, NY, USA, 2009. ACM.

[2] Center of Excellence for Software Traceability
(COEST). Software Traceability [Online]. http:

//coest.org/bok/index.php/Main_Page, 2015.

[3] D. Diaz, G. Bavota, A. Marcus, R. Oliveto,
S. Takahashi, and A. D. Lucia. Using code own-
ership to improve ir-based traceability link recov-
ery. In IEEE 21st International Conference on
Program Comprehension, ICPC 2013, 2013.

[4] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. D.
Lucia. On integrating orthogonal information re-
trieval methods to improve traceability recovery.



In IEEE 27th International Conference on Soft-
ware Maintenance, ICSM, 2011, 2011.

[5] M. Goman, M. Rath, and P. Mäder. Lessons
Learned from Analyzing Requirements Traceabil-
ity using a Graph Database. Softwaretechnik-
Trends, 37(3), 2017.

[6] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to information retrieval. Cambridge
University Press, New York, 2008.

[7] M. Rath, M. Goman, and P. Mäder. State of
the Art of Traceability in Open-Source Projects.
Softwaretechnik-Trends, 37(3), 2017.

[8] M. Rath, P. Rempel, and P. Mäder. The IlmSeven
Dataset. In Requirements Engineering Conference
(RE), 2017 IEEE 25th International. IEEE, 2017.

[9] P. Rempel and P. Mäder. Preventing defects: The
impact of requirements traceability completeness
on software quality. IEEE Trans. Software Eng.,
43(8):777–797, 2017.


