
Towards a Model-Driven Method for Reusing Test Cases
in Software Migration Projects

Ivan Jovanovikj, Marvin Grieger, Enes Yigitbas
s-lab – Software Quality Lab, Paderborn University

Zukunftsmeile 1, 33102 Paderborn
{ijovanovikj, mgrieger, eyigitbas}@s-lab.upb.de

1 Introduction
Software testing is a very important activity in soft-
ware migration as it verifies whether the migrated
system still provides the same functionality as the
legacy system. However, testing in a software migra-
tion project is a costly and time-consuming endeav-
our [1]. Therefore, when an existing set of test cases is
available, its reuse should be considered. This can be
beneficial, not just from economical perspective, but
also from practical perspective: the existing test cases
contain valuable information about the functionality
of the legacy system and therefore about the desired
functionality of the migrated system, too.

However, reusing existing test cases is far from triv-
ial since several challenges need to be addressed. For
example, the quality of the existing test cases needs
to be assessed, since they might have become legacy,
too. If test cases are redundant or do cover parts of
the system that are not used anymore, there is no
value in spending effort on reusing them. As another
example, the traceability between the test cases and
the legacy system needs to be established. Only then,
changes to the legacy system can be reflected to the
test cases.

To address these challenges, we envision a novel test
case migration method that is based on test case re-
engineering: Following the idea of model-driven soft-
ware migration, we extract models out of the existing
test cases, reflect the changes from the software migra-
tion (co-evolution), and at the end, we employ model-
based testing to generate test cases for the migrated
system. Such a test case re-engineering method that
enables co-evolution of test cases, is not fully covered
by the existing research.

In this paper, we first discuss a set of challenges
that a test case re-engineering method needs to ad-
dress. Thereafter, we sketch our method and describe
in which way it considers the identified challenges.

2 Challenges in Test Case Reuse
After observing test case reuse in practice and ana-
lyzing current research, publications as well as migra-
tion projects, we identified a set of challenges which
should be addressed by an approach that aims to pro-
vide maximal reuse of the existing test cases.

C1. Assessment of existing test cases. The
value of the existing test cases has to be initially as-

sessed. This assessment is important to see whether
further reuse is beneficial. It should include checking
quality characteristics like effectiveness, understand-
ability, or structuredness, identifying the relation to
the system or code components, evaluating the test
coverage, etc.

C2. Consideration of all test case levels. Test
cases at all test levels (unit, integration, system level)
have to be considered. Depending on the type of
the migration (language, framework or architectural
change), test cases from all test levels may be needed
in order to test the migrated system.

C3. Consideration of automated and non-
automated test cases. Both automated and non-
automated test cases have to be considered. A non-
automated test case may still contain valuable infor-
mation about the migrated system. For example, sys-
tem tests are mostly manual, since they address the
expected behavior from the end users perspective.

C4. Support for different levels of granular-
ity. In model-based testing, one of the key issues is
the level of granularity of test models. Should the
test cases be more coarse grained and contain only
the important concerns (higher level of abstraction) or
should they be more fine-grained, each covering more
specific concern in detail (lower level of abstraction).

C5. Establishment of traceability. A relation
between the test models and the models of the system
has to be established, as shown in Fig. 3. This relation
enables an assessment of test coverage and also, prop-
agation of relevant system changes. For example, us-
ing these relations, changes in the system architecture
could be reflected to the integration test model.

C6. Refactoring of test models. Refactoring
of the obtained test models my be needed since the
existing test case set may contain obsolete or duplicate
test cases. We assume that these anomalies could be
easier detected at model level, as shown in Fig. 2.
For example, an integration test case may check a
connection of two components that actually should
not be connected, or in system testing, a test case
may check a scenario that should not be possible.

C7. Reflection of system changes. The
changes happening during the restructuring of the
software migration have to be reflected to the test
models. It is important in order to obtain relevant
test models, and thus, relevant test cases. In other

Legacy
System

Migrated
System

Legacy
Model

Migrated
Model

Legacy
Test Cases

Migrated
Test Cases

Legacy Test
Model

Migrated
Test Model

Quality
assesement

Reverse
Engineering

Forward
Engineering

Refactoring

Relation

Restructuring

Restructuring

1

4

3

5

Reverse
Engineering
2 6 Forward

Engineering

Fully automatic activity
Semi-automatic activity
(manual intervention needed)

Figure 1: Co-evolution of test cases by applying a test
case re-engineering method

words, the co-evolution of test cases needs to be sup-
ported. Establishing traceability, as explained under
C5, is an essential prerequisite to enable co-evolution
of test cases.

3 Solution Idea
Having the challenges in mind, we present our envi-
sioned solution and discuss how we aim to address
these challenges.

In general, we envision a test case migration ap-
proach, i.e., a test case re-engineering method, tightly
related to the software migration as shown in Figure 1.
As the first step, we do an initial assessment of the
existing test set regarding its quality (C1), to decide
whether reuse of existing test cases would be benefi-
cial. For example, by analyzing previous test reports,
we can find out how effective these test cases were and
what coverage they had, regarding requirements, code
components, etc.

If the assessment step gives a positive result, we
can then approach to the second step, namely the re-
verse engineering of test cases. Existent reverse en-
gineering techniques from model-based testing could
be re-used [2], or, in case of specific requirements (dif-
ferent test levels, non-automated test cases, different
levels of granularity), a new technique may be devel-
oped. For the non-automated test cases, on a system
level for example (cf. Fig. 2), we may need a tech-
nique which would also be able to discover models at
different level of granularity (C2, C3 and C4). The
outcome of the reverse engineering step at the level
of unit testing could be a class, activity or state-chart
diagram, at the level of integration testing it could be
component diagram (cf. Fig. 3), while activity or state
chart diagrams could be used at the level of system
testing (cf. Fig. 2).

After the test models are obtained, as the third
step, we establish relations between test models and
models of the system (C5). We assume that by us-
ing model matching techniques, corresponding model
elements can be be related, as shown in Fig. 3. This
should enable refactoring of test models when some
errors are detected, as well as reflection of the changes
that happen in the system.

Once the relation is established, in the fourth step
we analyze the test models again to see whether refac-

TC1: do_A; do_B; do_E

TC2: do_A; do_C; do_E

TC3: do_A; do_D; do_E

A

CB D

E

A

B

E

Existing test cases
(just test steps)

System test model
(coarse grained)

A

C

E

A

D

E

System test model
(fine grained)

Figure 2: Example for error detection and level of
granularity
toring is needed (C6). For example, for the system
level test cases, after the re-engineering step we obtain
an activity diagram representing the expected behav-
ior according to the old test cases. Due to evolution-
ary development of the old test cases, it may be the
case that some non-allowed paths are present in the
diagram, which could be easily noticed and corrected.
For example, in Fig. 2, the path including activity D
should not be checked anymore, since this activity is
not part of the desired flow anymore.

A

TC1: test_A_to_B_S1

TC2: test_A_to_B_S2
BS2

S1

A
B

S2

S1

C

Existing test cases Integration test model Model of the system

Figure 3: Example for relations between an integra-
tion test model and a model of the system

In the fifth step, we do restructuring of the test
models by reflecting relevant changes that happen
during restructuring of the system (C7). In differ-
ent migration scenarios, different levels of test cases
are affected in different ways. For example, Fig. 3
gives an example of an architectural change, where
the newly introduced component C overtakes the re-
sponsibility for providing the interface S2. Since the
integration test model does not contain the new com-
ponent, it is not anymore valid and must be modi-
fied. Namely, the component C with the interface S2
should be added.

Once the test models are updated with the relevant
changes coming from the system restructuring, they
could be used in the last step, the sixth step, as in-
put for the forward engineering of test cases, i.e., the
actual test case generation using model-based testing.

To summarize, the overall aim is to provide the
highest level of automation for each of the discussed
steps, thus minimize required manual intervention in
the semi-automated activities (cf. Fig. 1).

References
[1] H. M. Sneed, “Risks involved in reengineering

projects,” 1999.

[2] A. Jääskeläinen et al., “Synthesizing Test Models
from Test Cases,” 2009.

[3] A. Menychtas et al., “Artist methodology and
framework: A novel approach for the migration
of legacy software on the cloud,” 2013.

