
A Study on Tool Support for Refactoring in Database Applications

Hagen Schink1, Janet Siegmund∗2, Reimar Schröter*1, Thomas Thüm3, and Gunter Saake1

1University of Magdeburg, 2University of Passau, 3TU Braunschweig

Abstract

Refactoring is a widespread method to improve the
structure of an application’s source code without af-
fecting the application’s behavior. However, since
refactorings are defined for single programming lan-
guages or programming paradigms, refactorings do
not consider the interaction of source code of differ-
ent programming languages. Thus, refactoring can
break applications written in different programming
languages. We found that our tool improves the pro-
ductivity regardless of the participants’ programming
experience, but there is also room for improvement
regarding support for certain refactoring tasks.

1 Introduction

The term refactoring describes changes that alter the
structure but not the semantics of source code. Refac-
toring is a widespread methodology in software de-
velopment and is supported by state-of-the-art IDEs,
such as Eclipse. Developers use refactorings to in-
crease the maintainability of source code and to ease
the implementation of new features.

The combination of different general-purpose and
domain-specific languages is common in software de-
velopment. Domain-specific languages allow develop-
ers a concise implementation of logic of a certain do-
main, whereas general-purpose languages support de-
velopers in the general application development.

To support refactoring in database applications, we
developed the refactoring tool sql-schema-comparer
(SSC) [3]. The aim of our study was to evaluate
whether SSC actually improves the productivity of
developers refactoring a database application.

2 The Tool

SSC uses graphs to detect mismatches between the
schema of a relational database and the schema ex-
pected by the Java source code that accesses the re-
lational database. In Java, the expected schema can
be defined with the Java Persistence API (JPA). For
instance, for the JPA entity Department in Listing 1,
SSC creates one graph with a root node departments
and the two leaves id and name. Since SSC would
create the same graph for a table departments with

∗The work of Janet Siegmund and Reimar Schröter has been
supported by the DFG grant SI 2045/2-1 and BMBF grant
01IS14017B, respectively.

Listing 1: JPA entity Department

1 @Entity
2 @Table(name=”departments”)
3 public class Department implements Serializable {
4 // fields and setters omitted for brevity
5 @Id
6 public int getId() { return id; }
7 public String getName() { return name; }
8 }

the two columns id and name, SSC would not de-
tect a mismatch between the expected and the actual
schema. We implemented a plug-in that integrates
SSC in Eclipse. The plug in highlights affected Java
classes, fields, and methods, if it detects a mismatch.
For instance, the plug-in marks a Java class annotated
with @Entity as erroneous that maps a missing table.

3 Study Method

We offered students of a database course at the Uni-
versity of Magdeburg appointments for taking part in
our study. The participants had to solve two refac-
toring tasks on the source code of the open-source
projects Apache Syncope and AppFuse with 77 000
and 24 000 lines of Java code, respectively. Both
projects use JPA to access a relational database. For
the two refactoring tasks, we prepared two Eclipse
projects with database instances on which we ap-
plied a Rename-Column (Task 1) and a Move-Column
refactoring (Task 2) beforehand. The refactored
databases cause the projects’ unit tests to fail. Ad-
ditionally, for each task we provided the participants
with a description of the refactoring applied to the
database instances. We assigned participants ran-
domly to a group with or without SSC support. A
group with SSC support got an Eclipse environment
with the SSC plug-in pre-installed, whereas the group
without SSC support got a plain Eclipse for the exper-
iment. The participants had to run the projects’ unit
test to ensure their changes fixed the broken applica-
tions. We measured the development times as metric
for productivity for each participant. Before the ex-
periment started, we used a minimal code example
to give an introduction to JPA, refactoring, and, if
necessary, to SSC. In the introduction, we used the
Rename-Column refactoring as example.



Without tool support With tool support

●

●

●
●

500

1000

1500

Inexperienced Experienced Inexperienced Experienced
Experience

T
im

e 
in

 s
ec

on
ds

Figure 1: Development time distribution for Task 1.

Without tool support With tool support

●

●

● ●

500

1000

1500

Inexperienced Experienced Inexperienced Experienced
Experience

T
im

e 
in

 s
ec

on
ds

Figure 2: Development time distribution for Task 2.

4 Results

In the experiment, we collected the development times
of 76 undergraduate and 3 graduate students. As ma-
jor confounding parameter, we consider programming
experience which we measured based on a question-
naire [2]. Based on the participants’ experience, we
distinguished inexperienced and experienced partici-
pants in the analysis.

Before we analyzed the data, we cleaned the data
set. First, we removed measurements of unsuccessful
tasks. We identified an unsuccessful task by a missing
successful unit-test run in the unit-test log. Hence,
we removed also incomplete tasks, because these miss
a successful unit-test run, too. After the removal of
unsuccessful tasks, we removed outliers, that is, de-
velopment times that deviate more than 1.5 standard
deviations from the mean. Eventually, we got 67 and
71 results which we considered for the final analysis.

Figures 1 and 2 present the development times
grouped by tool support and programming experi-
ence. We applied a two-way ANOVA [1] on the re-
sults of each task, with the independent variable SSC
support and the confounding variable programming
experience as the two factors. For Task 1, the groups
with SSC support were faster than the groups with-
out SSC support. The significance test shows a sig-
nificant effect of the variable SSC support (p < .01).
Considering the means, the performance differs for in-
experienced participants by 284.3 seconds and for ex-
perienced participants by 53.7 seconds. The results
show no significant interaction of SSC support and
programming experience.

For Task 2, the groups with SSC support were
slower than the experienced group without SSC sup-
port, but faster than the inexperienced group without
SSC support. The results of the significance test show

no significant effect of SSC support, but of program-
ming experience (p < .05) on the development time.

5 Discussion and Conclusion

For Task 1, support by SSC allowed participants sig-
nificant faster adaption of the broken source code to a
renamed column in the database schema, regardless of
their programming experience. Since all participants
attended the introduction, which shares the same ra-
tionale with Task 1, we assume that all participants
were equally prepared for Task 1. Thus, we conclude
that the SSC improved the participants’ performance
with its ability to mark the Java source code affected
by the refactored database schema. A plain Eclipse
does not provide such information.

SSC support has no significant influence on Task 2.
However, programming experience shows a significant
effect on Task 2. The effect of programming expe-
rience is independent of SSC support. For Task 2,
participants had to adapt the Java source code to a
moved column in the database schema. Therefore,
the participants had to move specific methods from
a source to a target Java class. However, SCC only
highlights the affected methods in the source class,
but not the target Java class. Thus, participants with
SSC support were forced to find a way to complete the
adaption without SSC. We assume that experienced
users were faster to find the target class, irrespective
of SCC support. One possible reason for the better
performance of experienced participants could be the
ability of experienced users to faster adapt to the un-
known code base.

The results of Task 1 suggest that SSC can im-
prove the performance of developers adapting Java
source code to a database refactoring. However, as
the results of Task 2 suggest, advantages of SSC may
be diminished by an incomplete support of different
refactoring tasks. However, supporting Task 2 can
be achieved by exposing features that exist in SSC,
but not in its Eclipse plug-in used in the experiment.
Thus, in our future work, we will focus on integrating
more features of SCC into its Eclipse plug-in and on
the evaluation of different refactoring scenarios.

References

[1] G. Casella. Statistical Design. Springer-Verlag
New York, 2008.

[2] J. Feigenspan, C. Kästner, J. Liebig, S. Apel,
S. Hanenberg, and K. Christian. Measuring Pro-
gramming Experience. IEEE International Con-
ference on Program Comprehension, pages 73–82,
2012.

[3] H. Schink. Sql-Schema-Comparer: Support
of Multi-Language Refactoring with Relational
Databases. International Working Conference on
Source Code Analysis and Manipulation, pages
164–169, 2013.


	Introduction
	The Tool
	Study Method
	Results
	Discussion and Conclusion

