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ABSTRACT 
Parameterization of garbage collectors can help improving the 
overall run time of programs, but finding the best parameter 
combination is a tedious task. We used a simple brute-force 
optimization algorithm for the Java Parallel GC to study the 
behavior of benchmarks with thousands of configurations. As a 
result of this study, we propose a practically usable strategy for 
finding a “good” parameter combination with a small number of 
experiments. Using this strategy, only 10 configurations need to 
be tested in order to reduce the garbage collection time down to 
21% (56% on average). For the studied benchmarks, this results in 
an overall performance gain of up to 13%. 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – Memory 
management (garbage collection). 

General Terms 
Measurement, Performance, Experimentation. 

Keywords 
Garbage Collection, Parameterization, Optimization. 

1. INTRODUCTION 
Garbage collection is a convenient feature of programming 

languages that helps to avoid many memory-related programming 
errors. However, garbage collection adds to the run time of 
programs and thus decreases the performance. In Java, garbage 
collectors can be tuned with a number of parameters, but finding 
the best combination for a given program is anything but easy. 

The Parallel GC, as the default garbage collector, is used in 
most Java desktop applications. We therefore concentrated on this 
garbage collector. Since different garbage collectors are controlled 
by different parameters, the results from our investigation are of 
direct benefit only for programs in which the Parallel GC is used. 

In an earlier project [1], the ParamILS framework [2] was used 
to find the optimum parameter combination. The results from this 
project raised a few questions, which we attempted to answer in a 
follow-up project: 

• Can we achieve better results by spending more time on a 
brute force exploration of the search space? 

• Which parameters have the most relevant influence on the 
garbage collection overhead? 

• Can we find a strategy that allows us to find a “good” 
parameter configuration with only a few experiments? 

In the remainder of this paper, we first outline the problem and 
then describe the experiments that finally led to a small number of 
configurations that need to be tested. We finally recommend a 
simple series of experiments for finding a promising garbage 
collector configuration. 

2. PROBLEMS 
The Parallel GC can be controlled with 37 parameters. Many of 

these are on/off switches, but some are numeric with wide ranges 
of possible values. Due to logical dependencies, not all parameter 
combinations make sense. 

To simplify optimization of the parameters, we reduced value 
ranges and described dependencies between parameters. As a 
result, we ended up with 31 parameters. Although the search 
space became smaller, there are still 7.2·1035 possible 
combinations. 

Another problem is the execution time required for a single 
measurement. A program must be executed long enough to 
activate the garbage collector a number of times, so that the GC 
overhead can be measured. A number of iterations is required for 
warm-up, and the whole measurement must be repeated several 
times in order to statistically eliminate unwanted influences. For 
the benchmarks that we used, it took 18 minutes on average to 
measure the GC overhead for a single parameter configuration. If 
we need to find a good parameter configuration quickly, only a 
limited number of experiments can be made.  

Whereas other approaches suggest a feasible parameter 
configuration by means of profiling [3], we decided to actually 
measure the actual GC overhead for concrete configurations. 

3. BRUTE-FORCE EXPLORATION 
The goal of the first phase was a) to find out whether we can 

find better results than ParamILS and b) to gain insight about the 
influences of individual parameters. The primary goal was 
exploring the search space rather than quickly finding the best 
possible combination. We therefore did not use optimization tools 
(such as HeuristicLab [4] or OptLets [5]), but rather developed a 
simple brute-force algorithm that systematically varies GC 
parameters of already known configurations. Our algorithm 
collects all tested parameter configurations; it then heuristically 
selects a “promising” configuration as the starting point for 
variation of parameters. The results are again added to the 
collection. 

 

 



To enable comparison with previous results, we ran our 
experiments with the same set of DaCapo benchmarks that were 
used in [1]: h2, jython, sunflow, tomcat, tradesoap, and xalan. In 
the following, we use the term experiment for a statistically 
significant measurement of a single parameter configuration. The 
result of an experiment is the lowest GC time (peak performance) 
of three runs, where each run consists of 10 iterations. Within a 
run, the first 5 iterations are discarded as part of the warm-up 
phase; the lowest GC overhead of the last 5 is used as the result of 
a run. The following table shows the results of the brute-force 
algorithm in comparison with ParamILS. 

Table 1. Brute Force results vs ParamILS 
benchmark # exp. time/exp. 

[s] 
GC 
[%] 

ParamILS 
[% def] 

Brute 
[% def] 

h2 2466   1917  2.0   45  19 
jython 3261   837  1.7   50  44 
sunflow 2019   426  9.3   87  94 
tomcat 2726   435  1.9   67  46 
tradesoap 2180   2130  12.0   86  77 
xalan 2227   672  18.2   23  24 
 ∑14879   Ø 1070 Ø 7.5   Ø 60  Ø 51 

The total run time of the brute force experiments was about half 
a year. During that time, 14879 parameter configurations were 
tested, where a single experiment took about 18 minutes on 
average. The GC column in Table 1 shows the garbage collection 
overhead as a percentage of the total run time; the last two 
columns compare the results achieved by our brute-force 
algorithm with those of ParamILS. These numbers show the GC 
time as a percentage of the default configuration. With one 
exception, the new results were equal to or better than those 
produced by ParamILS. 

4. FINDING RELEVANT PARAMETERS 
In the next phase, we tried to find those parameters that have the 

most significant influence on GC time. To do so, we extracted 
subsets from the collected experiments, where the configurations 
within a subset differ only in a single parameter. In these subsets, 
we analyzed the effect of a deviation from the parameter’s default 
value. For example, the data for h2 contained 177 cases where 
deviation from the default value of SurvivorPadding reduced the 
GC time, and 107 cases where the change increased the GC time. 

Statistical aggregation of the parameter effects over all six 
benchmarks showed that only 10 out of 31 parameters either yield 
significant improvement or have a good chance for improvement. 
This allowed us to exclude many parameters from further 
investigation. 

UseAdaptiveGCBoundary turned out to be the most significant 
parameter. By default, this option is disabled, but turning it on 
reduces the GC overhead in 84% of all cases, and in those cases 
the average reduction is almost 50% of the GC overhead. We 
therefore expect that turning this parameter on would increase 
performance for most programs. 

This analysis showed which parameters had a chance to reduce 
the GC overhead, but we still needed to find reasonable 
alternative values. In the case of on/off switches, there is only one 
alternative, but some parameters have numerical value ranges. As 
an example, the following diagrams show the effects of the 
SurvivorPadding parameter in all six benchmarks. Each line 
represents a subset in which only the SurvivorPadding parameter 
is modified. The vertical axis shows the costs of changes in terms 
of GC time, where the best possible value in each subset sits on 
the baseline. 
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Figure 1. Effect of SurvivorPadding parameter on GC time 
The diagrams show that there is no single best value of the 

SurvivorPadding parameter, but the values 1, 3, and 5 seem to be 
good choices for experiments. 

We manually studied these diagrams for all 31 parameters. In 
combination with the statistical evaluation, we identified the 
following 10 promising parameters: 

Table 2. Most relevant parameters 
№ parameter def alt chance 

[%] 
Ø impr. 
[% def] 

1 AdaptiveSizeDecrement- 
 ScaleFactor 

4 5, 6 44  9.5 

2 MaxTenuringThreshold 15 1 53  21.1 
3 MaxHeapFreeRatio 70 50 38  6.3 
4 UseAdaptiveGCBoundary 0 1 84  49.1 
5 SurvivorPadding 3 1 45  16.5 
6 AdaptiveSizePolicyWeight 10 50 43  10.2 

[7] MinHeapFreeRatio 40 20, 25 29  7.9 
8 YoungPLABSize 4096 1024 25  16.2 
9 UseAdaptiveSizePolicy- 

 WithSystemGC 
0 1 43  10.2 

[10] NewRatio 2 1 11  27.1 

The def column shows the parameter’s default value; the alt 
column lists suggested alternative values. The chance column 
shows the percentage of cases where variation of the parameter 
resulted in an improvement during the brute-force runs, and 
Øimpr. shows the average improvement in percent of the default 
GC time. 

5. FINDING A LINEAR SEQUENCE 
With the reduced parameter set, there are still 2304 possible 

configurations. If an experiment with a single configuration takes 
18 minutes (the average in our setup), we would need about 29 
days to run all experiments. This is far too long for practical 
application, in particular when we want to repeat the experiments 
in case of a platform change or after maintenance. 

To reduce the experimental effort, we used a variant of a hill-
climbing algorithm to find a good parameter combination. 
Starting with the default configuration, we try all alternative 
parameters listed in Table 2. Whenever one such variation 
produces a better result than the default value, the algorithm 
recursively tries all variations that can be reached from there. We 
call this algorithm MultiHill, because it uses a hill climbing 
approach with multiple starting locations. This approach still 
turned out to be too expensive; it took 453 experiments to find the 
best possible parameter combination for h2. 

When multiple parameters are involved in optimization, the 
order in which the parameters are modified makes a difference. 
For example, starting with parameter A may yield a big 
improvement but lead to a dead end. We therefore tried to find a 
linear sequence of parameters that a) leads to the best possible 
result, b) works equally well for all investigated benchmarks. The 
goal was to tackle each parameter exactly once, in order to reduce 
the number of required experiments. 

We tried all possible permutations, but could not find a single 
parameter order that produces the best results for all benchmarks. 
We therefore selected the parameter order with the lowest costs 



over all benchmarks. This order does not always produce the same 
result as the MultiHill optimization, but the deviation is less than 
1% for most benchmarks (with a maximum of 5% for jython). 

The parameters in Table 2 are listed in the best order that we 
found in our experiments. Based on this order, we suggest the 
following algorithm for finding a good parameter combination: 

Measure the GC time with the default parameter settings. 
Go through the parameters in Table 2 from top to bottom and 
try the alternate values. Set that parameter to the value that 
yields the best result. 

This way, testing all 10 parameters takes 13 experiments, 
including the initial experiment with the default values. 

6. OMITTING PARAMETERS 
In the next step, we studied the progress made with this 

parameter sequence for all benchmarks (see Figure 2). We hoped 
to find parameters that have only a small influence on the final 
result, so they could be omitted. 
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Figure 2. Progress during parameter modifications 

The diagrams show that some of the parameters, notably 2 and 
4, but also 6 and 9, have a significant influence. This leaves six 
parameters that could potentially be omitted. However, Figure 2 
shows only the direct influences of the parameters, but a 
seemingly weak parameter change may be necessary to make 
subsequent improvements possible. To find out which parameters 
could be omitted, we tried all combinations of omissions of the 
parameters 1, 3, 5, 7, 8, and 10. It turned out that even the 
omissions with the smallest influence increase the GC overhead 
by a few percent. But if we are ready to accept an increase of up 
to 5%, we can omit the parameters 7 and 10 (MinHeapFreeRatio 
and NewRatio, in brackets in Table 2 and Figure 2). Omitting 
these two parameters reduces the number of required experiments 
from 13 to 10, with only a minor increase in GC time. 

7. COMPARISON OF METHODS 
Figure 3 shows the normalized GC times for the various 

approaches described in this paper. The first bar represents the 
default configuration (100%). The second bar shows the results 
achieved with ParamILS. The third bar represents the best result 
achieved with our brute-force algorithm. The fourth bar shows the 
results of the hill climbing algorithm with the reduced parameter 
set. The last two bars show the results with our recommended 
parameter sequence (for all 10 parameters and the 8 most relevant 
parameters). 

The final results with the top 8 parameters are about as good as 
the results with ParamILS [2], in two cases even significantly 
better. Only for sunflow, our approach falls behind ParamILS, but 
this is a benchmark for which the default configuration is already 
“quite good”, so that tweaking the parameters does not yield 
significant improvements with any method. 
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Figure 3. GC times for multiple approaches 

Table 3 shows the results of running 10 experiments with the 
reduced “top 8” parameter set. GC time is the final garbage 
collection time in percent of the default configuration (this 
corresponds to the rightmost bar for each benchmark in Figure 3). 
The last column shows the overall reduction of run time. xalan is 
an extreme case because the garbage collector consumes 18.2% of 
the total run time. In this case, our approach is able to reduce the 
run time by 13.4% with 10 experiments that take less than 2 
hours. Even for the other benchmarks (where the GC’s share on 
overall run time is much smaller), the run time improvements are 
typically in the range of 1 to 2 percent. 

Table 3. Effort and improvements 
benchmark time for 

10 exp. [h] 
GC time 

[%] 
saved run 
time [%] 

h2 5.3 21.5  1.6 
jython 2.3 53.4  0.8 
sunflow 1.2 98.6  0.1 
tomcat 1.2 51.3  0.9 
tradesoap 5.9 85.0  1.8 
xalan 1.9 26.1  13.4 
Ø 3.0 56.0  3.1 

8. CONCLUSIONS 
Our approach shows that “good” parameter combinations for 

controlling a garbage collector can be found with a small number 
of experiments in a few hours. The benefit is reduced run time and 
reduced delays caused by interruptions during program execution. 
The average improvement over the tested benchmarks is about 3% 
of overall time. 

The downside of our approach is that it cannot be easily 
extended to other parameter sets, such as different GC 
implementations. Applying our approach to a different problem 
class with different parameters requires analysis of large data sets 
based on many time-consuming experiments. 
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