
Time Matters: Minimizing Garbage Collection
Overhead with Minimal Effort

Günther Blaschek
Institute for System Software
Johannes Kepler University

Linz, Austria
gue@jku.at

Philipp Lengauer

Institute for System Software
Johannes Kepler University

Linz, Austria
philipp.lengauer@jku.at

ABSTRACT
Parameterization of garbage collectors can help improving the
overall run time of programs, but finding the best parameter
combination is a tedious task. We used a simple brute-force
optimization algorithm for the Java Parallel GC to study the
behavior of benchmarks with thousands of configurations. As a
result of this study, we propose a practically usable strategy for
finding a “good” parameter combination with a small number of
experiments. Using this strategy, only 10 configurations need to
be tested in order to reduce the garbage collection time down to
21% (56% on average). For the studied benchmarks, this results in
an overall performance gain of up to 13%.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – Memory
management (garbage collection).

General Terms
Measurement, Performance, Experimentation.

Keywords
Garbage Collection, Parameterization, Optimization.

1. INTRODUCTION
Garbage collection is a convenient feature of programming

languages that helps to avoid many memory-related programming
errors. However, garbage collection adds to the run time of
programs and thus decreases the performance. In Java, garbage
collectors can be tuned with a number of parameters, but finding
the best combination for a given program is anything but easy.

The Parallel GC, as the default garbage collector, is used in
most Java desktop applications. We therefore concentrated on this
garbage collector. Since different garbage collectors are controlled
by different parameters, the results from our investigation are of
direct benefit only for programs in which the Parallel GC is used.

In an earlier project [1], the ParamILS framework [2] was used
to find the optimum parameter combination. The results from this
project raised a few questions, which we attempted to answer in a
follow-up project:

• Can we achieve better results by spending more time on a
brute force exploration of the search space?

• Which parameters have the most relevant influence on the
garbage collection overhead?

• Can we find a strategy that allows us to find a “good”
parameter configuration with only a few experiments?

In the remainder of this paper, we first outline the problem and
then describe the experiments that finally led to a small number of
configurations that need to be tested. We finally recommend a
simple series of experiments for finding a promising garbage
collector configuration.

2. PROBLEMS
The Parallel GC can be controlled with 37 parameters. Many of

these are on/off switches, but some are numeric with wide ranges
of possible values. Due to logical dependencies, not all parameter
combinations make sense.

To simplify optimization of the parameters, we reduced value
ranges and described dependencies between parameters. As a
result, we ended up with 31 parameters. Although the search
space became smaller, there are still 7.2·1035 possible
combinations.

Another problem is the execution time required for a single
measurement. A program must be executed long enough to
activate the garbage collector a number of times, so that the GC
overhead can be measured. A number of iterations is required for
warm-up, and the whole measurement must be repeated several
times in order to statistically eliminate unwanted influences. For
the benchmarks that we used, it took 18 minutes on average to
measure the GC overhead for a single parameter configuration. If
we need to find a good parameter configuration quickly, only a
limited number of experiments can be made.

Whereas other approaches suggest a feasible parameter
configuration by means of profiling [3], we decided to actually
measure the actual GC overhead for concrete configurations.

3. BRUTE-FORCE EXPLORATION
The goal of the first phase was a) to find out whether we can

find better results than ParamILS and b) to gain insight about the
influences of individual parameters. The primary goal was
exploring the search space rather than quickly finding the best
possible combination. We therefore did not use optimization tools
(such as HeuristicLab [4] or OptLets [5]), but rather developed a
simple brute-force algorithm that systematically varies GC
parameters of already known configurations. Our algorithm
collects all tested parameter configurations; it then heuristically
selects a “promising” configuration as the starting point for
variation of parameters. The results are again added to the
collection.

To enable comparison with previous results, we ran our
experiments with the same set of DaCapo benchmarks that were
used in [1]: h2, jython, sunflow, tomcat, tradesoap, and xalan. In
the following, we use the term experiment for a statistically
significant measurement of a single parameter configuration. The
result of an experiment is the lowest GC time (peak performance)
of three runs, where each run consists of 10 iterations. Within a
run, the first 5 iterations are discarded as part of the warm-up
phase; the lowest GC overhead of the last 5 is used as the result of
a run. The following table shows the results of the brute-force
algorithm in comparison with ParamILS.

Table 1. Brute Force results vs ParamILS
benchmark # exp. time/exp.

[s]
GC
[%]

ParamILS
[% def]

Brute
[% def]

h2 2466 1917 2.0 45 19
jython 3261 837 1.7 50 44
sunflow 2019 426 9.3 87 94
tomcat 2726 435 1.9 67 46
tradesoap 2180 2130 12.0 86 77
xalan 2227 672 18.2 23 24
 ∑14879 Ø 1070 Ø 7.5 Ø 60 Ø 51

The total run time of the brute force experiments was about half
a year. During that time, 14879 parameter configurations were
tested, where a single experiment took about 18 minutes on
average. The GC column in Table 1 shows the garbage collection
overhead as a percentage of the total run time; the last two
columns compare the results achieved by our brute-force
algorithm with those of ParamILS. These numbers show the GC
time as a percentage of the default configuration. With one
exception, the new results were equal to or better than those
produced by ParamILS.

4. FINDING RELEVANT PARAMETERS
In the next phase, we tried to find those parameters that have the

most significant influence on GC time. To do so, we extracted
subsets from the collected experiments, where the configurations
within a subset differ only in a single parameter. In these subsets,
we analyzed the effect of a deviation from the parameter’s default
value. For example, the data for h2 contained 177 cases where
deviation from the default value of SurvivorPadding reduced the
GC time, and 107 cases where the change increased the GC time.

Statistical aggregation of the parameter effects over all six
benchmarks showed that only 10 out of 31 parameters either yield
significant improvement or have a good chance for improvement.
This allowed us to exclude many parameters from further
investigation.

UseAdaptiveGCBoundary turned out to be the most significant
parameter. By default, this option is disabled, but turning it on
reduces the GC overhead in 84% of all cases, and in those cases
the average reduction is almost 50% of the GC overhead. We
therefore expect that turning this parameter on would increase
performance for most programs.

This analysis showed which parameters had a chance to reduce
the GC overhead, but we still needed to find reasonable
alternative values. In the case of on/off switches, there is only one
alternative, but some parameters have numerical value ranges. As
an example, the following diagrams show the effects of the
SurvivorPadding parameter in all six benchmarks. Each line
represents a subset in which only the SurvivorPadding parameter
is modified. The vertical axis shows the costs of changes in terms
of GC time, where the best possible value in each subset sits on
the baseline.

1 2 3 4 51 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 51 2 3 4 5

tradesoap xalantomcatsunflowjythonh2

Figure 1. Effect of SurvivorPadding parameter on GC time
The diagrams show that there is no single best value of the

SurvivorPadding parameter, but the values 1, 3, and 5 seem to be
good choices for experiments.

We manually studied these diagrams for all 31 parameters. In
combination with the statistical evaluation, we identified the
following 10 promising parameters:

Table 2. Most relevant parameters
№ parameter def alt chance

[%]
Ø impr.
[% def]

1 AdaptiveSizeDecrement-
 ScaleFactor

4 5, 6 44 9.5

2 MaxTenuringThreshold 15 1 53 21.1
3 MaxHeapFreeRatio 70 50 38 6.3
4 UseAdaptiveGCBoundary 0 1 84 49.1
5 SurvivorPadding 3 1 45 16.5
6 AdaptiveSizePolicyWeight 10 50 43 10.2

[7] MinHeapFreeRatio 40 20, 25 29 7.9
8 YoungPLABSize 4096 1024 25 16.2
9 UseAdaptiveSizePolicy-

 WithSystemGC
0 1 43 10.2

[10] NewRatio 2 1 11 27.1

The def column shows the parameter’s default value; the alt
column lists suggested alternative values. The chance column
shows the percentage of cases where variation of the parameter
resulted in an improvement during the brute-force runs, and
Øimpr. shows the average improvement in percent of the default
GC time.

5. FINDING A LINEAR SEQUENCE
With the reduced parameter set, there are still 2304 possible

configurations. If an experiment with a single configuration takes
18 minutes (the average in our setup), we would need about 29
days to run all experiments. This is far too long for practical
application, in particular when we want to repeat the experiments
in case of a platform change or after maintenance.

To reduce the experimental effort, we used a variant of a hill-
climbing algorithm to find a good parameter combination.
Starting with the default configuration, we try all alternative
parameters listed in Table 2. Whenever one such variation
produces a better result than the default value, the algorithm
recursively tries all variations that can be reached from there. We
call this algorithm MultiHill, because it uses a hill climbing
approach with multiple starting locations. This approach still
turned out to be too expensive; it took 453 experiments to find the
best possible parameter combination for h2.

When multiple parameters are involved in optimization, the
order in which the parameters are modified makes a difference.
For example, starting with parameter A may yield a big
improvement but lead to a dead end. We therefore tried to find a
linear sequence of parameters that a) leads to the best possible
result, b) works equally well for all investigated benchmarks. The
goal was to tackle each parameter exactly once, in order to reduce
the number of required experiments.

We tried all possible permutations, but could not find a single
parameter order that produces the best results for all benchmarks.
We therefore selected the parameter order with the lowest costs

over all benchmarks. This order does not always produce the same
result as the MultiHill optimization, but the deviation is less than
1% for most benchmarks (with a maximum of 5% for jython).

The parameters in Table 2 are listed in the best order that we
found in our experiments. Based on this order, we suggest the
following algorithm for finding a good parameter combination:

Measure the GC time with the default parameter settings.
Go through the parameters in Table 2 from top to bottom and
try the alternate values. Set that parameter to the value that
yields the best result.

This way, testing all 10 parameters takes 13 experiments,
including the initial experiment with the default values.

6. OMITTING PARAMETERS
In the next step, we studied the progress made with this

parameter sequence for all benchmarks (see Figure 2). We hoped
to find parameters that have only a small influence on the final
result, so they could be omitted.

G
C

 ti
m

e
(%

 o
f d

ef
au

lt
se

tti
ng

)

0

20

40

60

80

100

Parameter number (see Table 2)

def 1 2 3 4 5 6 [7] 8 9 [10]

h2

xalan
tomcat

jython

tradesoap

sunflow

Figure 2. Progress during parameter modifications

The diagrams show that some of the parameters, notably 2 and
4, but also 6 and 9, have a significant influence. This leaves six
parameters that could potentially be omitted. However, Figure 2
shows only the direct influences of the parameters, but a
seemingly weak parameter change may be necessary to make
subsequent improvements possible. To find out which parameters
could be omitted, we tried all combinations of omissions of the
parameters 1, 3, 5, 7, 8, and 10. It turned out that even the
omissions with the smallest influence increase the GC overhead
by a few percent. But if we are ready to accept an increase of up
to 5%, we can omit the parameters 7 and 10 (MinHeapFreeRatio
and NewRatio, in brackets in Table 2 and Figure 2). Omitting
these two parameters reduces the number of required experiments
from 13 to 10, with only a minor increase in GC time.

7. COMPARISON OF METHODS
Figure 3 shows the normalized GC times for the various

approaches described in this paper. The first bar represents the
default configuration (100%). The second bar shows the results
achieved with ParamILS. The third bar represents the best result
achieved with our brute-force algorithm. The fourth bar shows the
results of the hill climbing algorithm with the reduced parameter
set. The last two bars show the results with our recommended
parameter sequence (for all 10 parameters and the 8 most relevant
parameters).

The final results with the top 8 parameters are about as good as
the results with ParamILS [2], in two cases even significantly
better. Only for sunflow, our approach falls behind ParamILS, but
this is a benchmark for which the default configuration is already
“quite good”, so that tweaking the parameters does not yield
significant improvements with any method.

0

20

40

60

80

100

h2 jython sunflow tomcat tradesoap xalan

Default
ParamILS
Brute Force
MultiHill
Rec. (all 10)
Rec. (top 8)

Figure 3. GC times for multiple approaches

Table 3 shows the results of running 10 experiments with the
reduced “top 8” parameter set. GC time is the final garbage
collection time in percent of the default configuration (this
corresponds to the rightmost bar for each benchmark in Figure 3).
The last column shows the overall reduction of run time. xalan is
an extreme case because the garbage collector consumes 18.2% of
the total run time. In this case, our approach is able to reduce the
run time by 13.4% with 10 experiments that take less than 2
hours. Even for the other benchmarks (where the GC’s share on
overall run time is much smaller), the run time improvements are
typically in the range of 1 to 2 percent.

Table 3. Effort and improvements
benchmark time for

10 exp. [h]
GC time

[%]
saved run
time [%]

h2 5.3 21.5 1.6
jython 2.3 53.4 0.8
sunflow 1.2 98.6 0.1
tomcat 1.2 51.3 0.9
tradesoap 5.9 85.0 1.8
xalan 1.9 26.1 13.4
Ø 3.0 56.0 3.1

8. CONCLUSIONS
Our approach shows that “good” parameter combinations for

controlling a garbage collector can be found with a small number
of experiments in a few hours. The benefit is reduced run time and
reduced delays caused by interruptions during program execution.
The average improvement over the tested benchmarks is about 3%
of overall time.

The downside of our approach is that it cannot be easily
extended to other parameter sets, such as different GC
implementations. Applying our approach to a different problem
class with different parameters requires analysis of large data sets
based on many time-consuming experiments.

9. REFERENCES
[1] Lengauer P., Mössenböck H. The Taming of the Shrew:

Increasing Performance by Automatic Parameter Tuning for
Java Garbage Collectors. Proc. of the 5th ACM/SPEC intl.
conf. on performance engineering (ICPE '14). 111-122

[2] Hutter, F., Hoos, H., Leyton-Brown, K., and Stutzle, T.
ParamILS: An Automatic Algorithm Configuration
Framework. Journal of Artificial Intelligence Research,
36:267–306, 2009.

[3] Singer J., Brown G., Watson I., Cavazo J. Intelligent
Selection of Application-specific Garbage Collectors. Proc.
of the Intl. Symp. on Memory Management, 91–102, 2007.

[4] Affenzeller M. Architecture and Design of the�HeuristicLab
Optimization Environment. Advanced Methods and
Applications in Computational Intelligence, 197–261, 2014.

[5] Breitschopf C., Blaschek G., Scheidl T. OptLets: A Generic
Framework for Solving Arbitrary Optimization Problems.
Proc. of the 6th WSEAS Int. Conf. on Evolutionary
Computing, 49-54, 2005

