
Testability and Unit Testing

Stefan Jungmayr
FernUniversität Hagen, Lehrgebiet Praktische Informatik III

Universitätsstraße 1, 58084 Hagen, Germany
stefan.jungmayr@fernuni-hagen.de
Abstract: A prerequisite for unit testing is the possibility
to test the unit under test in isolation. Ignoring this require-
ment during system design and implementation can
severely decrease the testability of a software system. This
article describes design guidelines and metrics which sup-
port software developers in avoiding testability problems.

1 Introduction
Testability got recent attention in the context of Test-

First Design1 which is an important element of Xtreme-
Programming [1] [5]. Test-First Design means to write test
cases before actually coding the body of member opera-
tions. By doing so software developers get early feedback
about the impact of dependencies on the testability of the
code and hints on which dependencies should be refac-
tored. While such an approach might be sufficient within
an Xtreme-Programming context, large projects following
a conventional development process require a more sys-
tematic approach to testability.

In this paper we focus on dependencies within object-
oriented systems and their effect on the testability of the
system implementation. First we describe dependencies
and their effect on unit testing, then we give some guide-
lines on how to design for unit testability, and present met-
rics that can be used to evaluate unit testability.

2 Dependencies
In the context of testing we focus on syntactical

dependencies between classes2. A syntactical dependency
from a class A to a class B means that class A needs class B
in order to compile correctly. The dependent class is called
client (class), the dependee class is called server (class).
Dependencies define a relation between classes, i.e.
between two classes there is at most one direct depen-
dency in each direction.

We distinguish between dependencies to types and
hard-wired dependencies:

1) A dependency on a type means that the server instance 
can belong to any class implementing the type of the 
server class. The type of the server class can be speci-
fied by 1a) an interface, 1b) an abstract class, or 1c) a 
concrete class.

2) A hard-wired dependency means that the server 
instance has to belong to a concrete class. The call of a 

class constructor for example always leads to a hard-
wired dependency.

3 Unit Testing and Dependencies
Unit testing means to focus on a small part of a soft-

ware system. During unit testing it is much easier to iso-
late faults compared to system testing.

A frequent situation encountered during unit-testing is
that the class-under-test (CUT) depends on other classes.
A common approach is to substitute these server classes
by stub or mock objects [4] which has the following
advantages:

• it avoids problems with server classes not ready for
testing,

• test set-up is easier,

• faster testing is possible (by removing dependencies
to classes involved in user interaction, access to data
bases, internet protocols, etc.), and

• failures are detected earlier (when using mock
objects).

In order to be able to substitute the server class by a
stub or mock object 1) the stub or mock object has to
implement the type of the server class and 2) the CUT has
to use a reference to the stub or mock object instead of a
reference to an instance of the server class.

The category of the dependency to the server class (as
defined in Chapter 2) is important for our ability to test a
class in isolation:

Category 1a: The stub or mock object can belong to any 
class implementing the type specified by the interface 
which means highest flexibility.

Category 1b and 1c: The stub or mock object must be an 
instance of a subclass of the server class (and there-
fore it can not inherit at the same time e.g. from a test 
framework class if multiple inheritance is not avail-
able).

Category 2: It is not possible to use stubs or mock objects 
instead of instances of the server class without chang-
ing the code of the client class.

4 Design for Unit Testability
We propose the following strategy to achieve unit test-

ability with respect to dependencies:

• Identify each class cut to be unit tested, e.g. business
entity classes or classes implementing critical func-
tionality.1 Also called Test-Driven Development.

2 By classes we also mean interfaces as long as we do not dis-
tinguish them explicitly.



• Design and use factory classes [2] for each cut to sepa-
rate object creation from object usage. If there is only
one instance of cut, then let the factory class handle
this.

• Avoid hard-wired dependencies from cut to its server
classes, i.e. avoid direct access to static members of
the server classes.

Possible exceptions to this rule are for example
instances of exception classes which should be created
directly without involving a factory class.

5 Improving Unit Testability
To improve the unit testability of an existing imple-

mentation we try to identify those hard-wired class depen-
dencies which are easy to be refactored into dependencies
on types.

In this context we analyze dependencies on the state-
ment level contributing to class dependencies. A depen-
dency on statement level is caused by a method call, a type
declaration of a parameter, or a statement declaring an
inheritance relationship for example. If there is at least one
hard-wired dependency on the statement level the respec-
tive class dependency is hard-wired as well.

A hard-wired class dependency, which is caused only
by a small number of hard-wired dependencies at the
statement level is a good candidate for refactoring into a
dependency on a type.

6 Unit Testability Metrics
In order to maintain and improve the unit testability of

a system we want to 1) evaluate the overall system w.r.t.
hard-wired dependencies, and 2) to identify problematic
dependencies or dependencies with improvement poten-
tial. The following metrics help to do so:

m1 percentage of hard-wired class dependencies

This (sub-)system-level metric helps to evaluate the
degree to which a (sub-)system suffers from hard-
wired dependencies.

m2 percentage of classes without hard-wired dependen-
cies

This (sub-)system-level metric (in combination with
metric m1) allows to evaluate the degree to which
hard-wired dependencies are spread over all classes of
the (sub-)system.

m3 average number of transitive hard-wired class depen-
dencies

This (sub-)system-level metric helps to evaluate the
average degree to which a class depends on other
classes because of hard-wired dependencies.

m4 percentage of hard-wired dependencies on statement 
level

This metric, applied to individual dependencies, indi-
cates hard-wired dependencies with a probably low
associated effort to transform them into a dependency
on a type.

7 Case Study
We studied a software system consisting of 273

classes and interfaces. Not considering GUI-related
classes, exception classes, and interfaces there are 155
test-relevant classes.

The software system is very difficult to test because of
a huge number of hard-wired dependencies to classes
including those involved in data base access as well as
cyclic dependencies [3]. Using a prototype metric tool
able to collect data concerning the metrics described in the
previous chapter the findings are:

• Overall there are 1085 direct class dependencies of the
test-relevant classes on other classes and interfaces.
About half of these direct class dependencies (536)
are hard-wired (m1 = 49%).

– 12 of these hard-wired dependencies are caused by
a combination of inheritance and static access
which should be refactored.

– 441 of these hard-wired dependencies are caused
by static access without involving inheritance. 149
of these 441 dependencies (34%) involve object
creation. This means that object creation and object
use are not well separated in many cases.

• The percentage of test-relevant classes without any
hard wired dependency is low (m2 = 14%).

• On average, each test-relevant class is hard-wired to
51 other classes in a transitive manner (m3 = 51.48).

• 95 (out of 536) hard-wired class dependencies are
caused by less than or equal to 25% hard-wired depen-
dencies at the statement level (m4 ≤ 25%) highlight-
ing first candidates for refactoring.

8 Summary
Hard-wired class dependencies can have a serious

impact on the ease of unit testing. The design guidelines
and metrics described in this article can help development
and test teams to avoid related test problems.

Acknowledgements

Many thanks to Edgar Merl for implementing the code
analysis unit of the prototype metric tool and for investigating
test problems during the case study.

References

[1] Kent Beck, "Test-Driven Development by Example", Addi-
son Wesley, 2003.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, "Design 
Patterns: Elements of Reusable Object-Oriented Software," 
Addison-Wesley, 1994.

[3] S. Jungmayr, "Identifying test-critical dependencies," in 
Proceedings of IEEE International Conference on Software 
Maintenance, Montréal, Canada, 3-6 October, 2002, pp. 404 
- 413.

[4] J. Link, "Einsatz von Mock-Objekten für den Softwaretest," 
JAVA Spektrum, no. 4, July/August 2001, pp. 53-59.

[5] J. Link, "Unit Tests mit Java: Der Test-First-Ansatz", 
dpunkt.verlag, 2002.


	1 Introduction
	2 Dependencies
	3 Unit Testing and Dependencies
	4 Design for Unit Testability
	5 Improving Unit Testability
	6 Unit Testability Metrics
	7 Case Study
	8 Summary
	Acknowledgements
	References

